INTRODUCTION ,\Q'\
T0 THE

\5
THEORY OF STM@@ES

\‘\?‘
N




INTRODUCTION

TO THE

THEORY OF STATISTICS

BY
ALEXANDER McFARLANE MOOD <:x
The RAND Corporation . \':}
Formerly Professor of Statistics, Iowa State College 3, *
. ) 3\ )
O
N
D
\&)
Q":& N/
‘}‘\x
g\&\./
O
AN
L)
x:\ml
O
Nod
O
"'\\f:‘
N/

New York Toronto Tondon

. MLGRA“ -HI]I BOOK COMPANY, INC.

7t

;f “ STy 4/ :-.-.._ 1950
e \'f-

»z.ﬂ. 22487 ;" |
D S '



N\
¥ 4 N ¢
\/

‘S ¥
INTRODUCTION TO THE THEORY OF SERTI=T T

Copyright, 1350, by the MeGraw-Hil! Bank Comp et Tre. Trirnoo '
All rights reserved. ¢Thnx ook, ur s - el

United States of Ameries,

may not be reproduced in any form withollt"l‘)fl'mis.-ai{m of the pmlelurs,
O
VERQY
l - "(‘;‘;‘o”o.‘\_““o‘pw

_ 3 gy
1AGRA UNIVFPSITY LIBRARY i
X
o\
()Y AGPA,
«C

é,?g.\}To 13717 ... ..
| ::ffﬁ&as No 5'8

*\,j Book No... .
’"\‘f;” b o S ——— sespde
~O

P I T}

LLTY TV Iy

THE
Marg PREzg COMPANY, YORE, Pa,



To

HARRIET
N

&
=

O

a3
@

©
S

Q&
A\
)






PREFACE

This book developed from s set of notes which T prepared in 1945.
At that time there was no modern text available specifically designed
for beginning students of mathematical statistics. Since then the
situation has been relieved congiderably, and had I known in advance
what books were in the making it is likely that T should not ‘kéye
embarked on this volume. However, it seemed sufficiently difierent
from other presentations to give prospective teachers and giddents a
useful alternative choiee. )

The afore-mentioned notes were used as texb materisdfor three years
at Towa State College in a course offered to senforand first-year
graduate students. The only prerequisite for the\¢etrse was one ycar
of caleulus, and this requirement indicates thelevel of the hook. (The
caleulus class at Towa State met four hours pefaveck and included good
coverage of Taylor series, partial differendiation, and multiple integra-
tion.) No previous konowledge of stag,tiétibs iz assumed. _

This is & statistics book, not &, méihematics book, as any mathe-
matician will readily see. Tittlgimathematical rigor is to be found in
the derivations simply becauge it *would be boring and largely a waste
of time at this level. Of cOurke rigorous thinking is quite essential to
good statistics, and T eheen st some pains to make a show of rigor
and to instill an appredation for rigor by pointing out various pitfalls
of loose arguments ™

While this teXb 14 primarily concerncd with the theory of statistics,
full cognizande has been taken of those students who fear that a
moment %{13; he wasted in mathematical frivolity. All new subjects
are squ}}lied with a little scencry from practical affairs, and, more
ilp\péﬁtant, o serious effort has been made in the problems fo iltustrate

ojvariety of ways in which the theory may be applied. _

The problems arc an essential part of the book. They range from
simple numerical examples to theoreras needed in subsequent chapters.
They inciude important subjects which could easily take precedence
over material in the toxt; the relegation of subjects to problems was
based rather on the feasibility of such a procedure than on the priority
of the subject. Tor example, the matter of correlation is dealt with
almost entirely in the problems. It geemed to me inefficient to cover
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PREFACE

multivariate situations twice in detail, i.e., with tho regression madel
and with the correlation model. The emphasis in the text proper is on
the more general regression model.

The author of a textbook is indebted to practically cvervone whoe
has touched the field, and I here bow to all statistichus.  However in
giving credit to contribulors one must draw the Iine somewhere and [
have simplified matters by drawing it very high; only the most eminent
eontributors are mentioned in the book.

My greatest personal debt is fo 8. 8. Wilks, who kindled my uaere=t
in statistics and who was my mentor throughout my termy of whduaie
study. Any merits which this book may have must be clugyey Logely
to his careful lectures and nnderstanding direction of m}-”\r}?11[1'in.~<,

My colleagues at Towa State College have all cong,rfbuto'_l muci {0
my understanding and general view of statistics, 723 am purticularly
aware of large debts to G. W, Brown, W, G,“(:}’ochran} and G W,
Snedecor. Among the many students wholhoroughly revised the
original notes by their exccllent comments#nt suggestions I must men-
tion H. D. Block, who gave the final manuscript a very careful und
competent review. DMargaret Kirwin® and Ruth Burns accuralely
translated my serawl into beautiful typescript. Bernice Brown and
Miss Burns carefully proofreagi*ﬁiié entire set of galleys.

I am indebted to Cathuy@lié “Thompson and Maxine Merrington,
and to . 8. Pearson, editor of Biomelrika, for permission to include
Tables IIT and V, whielndre abridged versions of tables published in
Biometrika. I am &&0"indebted to Professors R. A. Tisher and Frank
Yates, and to Megsys. Gliver and Boyd, Ltd., Edinburgh, lor permission
to reprint Tablé; TV from their book “Statistical Tables for TUse in
Biological, 'A'gricultural and Medical Research.”

In therfinnl chapter are some digtribution-free tests which werve
develppésl"j cintly by G. W. Brown and myself at Iowa State College on
a preject sponsored by the Office of Naval Rescarch.  Professor Brown

Jhasyvery generously and graciously permitted me to include this mate-

\ﬁ‘al which should have first appeared in print under his name as well as

mine. The tests referred to are presented in Sections %, 6, 7, 8, and 9 of
Chapfer 16.

ALEXANDER McFarLane Moon
Banra Mowzca, Calif.
January, 1950
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CHAPTER 1
INTRODUCTION

1.1. Statistics. In orderto place this book in its proper perspective,
it is necessary Lo consider first what statistics is. The lay conception
of statistics ordinarily includes the collection of large masses of daih
and the presentation of such data in tables or chartg; it mag also
include the caleulation of totals, averages, percentages, andiﬁé)ﬂ{e.
[n any casge this conception is aboub thirty vears out of date; these
smore or less routine operations arc ouly an incidental pakt of statistics
today. R4
We shall deseribe statistios a8 the technology ofthescientific method.
Statistics provides tools and techniques for researth workers. These
tools may be of quite gencral supplic:fm:ion}.Qx useful in any field of
science—physical, biclogical, or social \On the other hand certain
tools may be particularly designed fqp,épécial fieldg of research.

We shall not cmbark on & discgssibh of the scientific method here,
but we may recall its three mairn, {LB]_C;éC-f.S ~(1) the performance of experi-
mentg, {(2) the drawing of objettive conclusions from experiments, and
-(3) the construction of laws'to simplify the deseription of the conclhu-
sions of large classes uigﬁpériments. Statistics is primarily concerncd
with the first two ofsthese agpects; in fact, the field of statistics is com-
mwonly thought of Aasbeing divided into the two areas corresponding to
thesc two aspectfsp\: (1) the design of experiments and investigations, (2)
slatistical in,fere'nce. We shall continue our deseription of statisties
by disc1£s{ih1i these areag briefly in the following two sections.

1.2.The Design of Experiments and Investigations. An experi-
ment;is' meant to study the effect of variation of certain factors or the
%Qléﬁion between certain factors. Thus one may wish to study the
relation between temperature and pressure in & fixed volume of a gas.
Or one may wish to discover what if any effect on milk production
results from altering the proportion of roughage in 2 cow's dict.
Again one m0ay wish to study the effect on the retail price of a certain
commeodity when & given public policy regarding the commodity is
promulgated.

In the typical experiment the research worker i8 harassed by addi-

1



§1.2 INTRODUCTION

tional factors which influence the outcome of the experniment, fuctors
which he would like to chiminate but cannot control complelely,
These extranecus factors are least important in the plivsienl sclenees,
where the experimenter has good comtrol over his expesimental
material, They are quile important in the bhiological seiences, vihiere
the geneticist must deal with animals eacl having its own peculing
genetic inheritance, the plant breeder must deal with whatever vavie-
ties happen to be available, do his experiments in whatever soil i ot
hand and in whatever weather conditions may oceur. The extran@dus
factors become most troublesome in the soeinl sciences, whepe' the
research worker frequently has no control at all over his eqﬁr?hﬁvntal
material, BStudies in: these sciences are often Investigations ruther
than experiments. G

Btatistics iz concerned with these extrancous factofs—with design-
ing the experiment o as to eliminate them if ppgsible or to minimize
their effects, with arranging the experiment n‘space or time #o that
the effects may be expected to cancel or pattially cancel themselves,
with designing the experiment so that tbé:}ﬁ‘ect-s may be removed or
partiaily removed in the analysis of theMresulting data. The design
may be nothing more than an obvidis application of common sense.
Thus suppose batches of the Safné material from several different
sources are to be analyzed inm@rder to determine whether they are
sufficiently alike to be treat€d the same way in some manufacturing
process. A number of .gsp‘ééimens chosen at random from each hatch
are to be analyzed; twe men are to do the individual analyses. [t is
plain that the specifiens from cach batch should be divided equally
between the twe 'analysts, elsc variations due to differences in the
analysts’ fechniwtes will appear in the final results as differences
between l@t’fl}h’es. Experimental designs range from such trivial
devices ag'this to highly elaborate arrangements based on the mathe-
matical f;heory of finite geometries,

dr designing investigations, the problem is normally one of balanc-
ing extraneous factors by selecting representative sarples. Thus sup-
pose a political party, in order to judge how actively it should campaign
in  given stute, employs a public-opinion-polling agency to cstimate
the proportions of voters in the state who intend to vote for itg candi-
'dat-e and the rival candidate. The polling agency will do this by
interviewing a sample of voters in the state. It is clear that the factor
in which ‘t-he agency Is intercsted (proportions of voters favoring the
jc-wo cz’mdfda'ltes) Wi.ll be widely influenced by a great many other factors
In which it is not directly interested. For cxample, farmers as a group

2
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and laborers as a group may feel quite differently about the candi-
dates. The agency must control this factor by making the proportions
of people in various occupstional groups in the sample equal to those
proportions in the state. It should make the proportions of people in
various racial groups in the sarmnple equal those for the state. The
proportions of people at different economic levelz should be the same.
"T'he proportions of people in different geographical arcas ghould be the
same. And soon, The sample should, in short, be as representative
as possible of the population of the state. The statigtician is concerned
with ways of selecting such samples or, if this is impossible or impac-
ticable, with ways of assessing the magnitudes of the effects of such
extraneous factors and removing them in the final analys\'fé‘ﬁf the
results, « \

1.3, Statistical Inference. New knowledge in sciefite is usually
found By a logically hazardous process—the Processi ot generalizing
from particular results. The seientist, on perceiving a certain patiern
in the results of one or more experiments, conjeehures that the pattern
may be characteristic of a large class of ngljble experiments. The
conjecture or hypothesis would ordinaxily be tested by performing
other experiments; it might be furthes Bipported or it might be dis-
proved. The latter outcome is o means infrequent, for gen-
eralization or inductive thinkinglis well known t0 lead to uncerbain
conclusions. N\ .

The broad problem of sdtistical inference is to provide measures of
the uncertainty of conelUsions drawn from cxperimental data. This
problem 1 attacked Dy means of the theory of probability, which
forms the foundation of the theory of statistical inference. The tools
of statistical ipdevénce enable the scientist to assess the reliability of
his conclusioné' "1 terms of probability statements. To consider a
simple e&‘rﬁ’ﬁlc: Supposc a chemist has made three precise determina-
tions _ef “the atomic weight of chlorine, and suppose his results are
354563, 35.4578, 95.4575. e might eonclude, for cxample, that the
e’ atomic weight is between 95456 and 35.458. It is the function
W statistical inference to tell the chemist to what cxtent he may rely
on this conclusion.  The measure of reliability might be given by 2
datement of this form: “The odds are two Lo one thai the conclusion
1¢ orrect.’ If it is important that the chemist estimate the atomic
weight within .002, he will likely be dissatisfied with such low odds
and will make further determinations in order to decrease hig chances
of being wrong. He might, for examyple, feel that for his purposes he
must be very confident of his conclusion and repeat his determinations

3



§1.4 INTRODUCTION

until there is only one chance in a hundred of his {inal conelusion being
in error.

It is usually impossible to make an entirely valid generalization -to
arrive at o certain conclusion on the basgs of experimoental eyvidence,
But it is possible to measure the uncertainty of sueh eonclusions in
probability terms and thus resolve to a conslderable degree o very
troublesome problem fuced by every seientizt,

The scope of statistical inferenee 13 as broad as experimentition
itself.  An experiment may be intended merely to evaluate aeongtant,
a3 in the illustration just given, or it may be meant to evaluateduran-
eters in a function, or perhaps to estimate a funetion itzell, G set of
functions.  An experiment may be designed to test a cerfyh Tvpothe-
sis suggested by o tenlulive theory - the h\puﬂumla Ll[«li Two Litors
are unrelated, that a relation has a speeified ’mmfmnll form.  The
experimenter may have to contend with relatiy N\t smnll effects from
exlraneous faclors, as in the physical selentdsY or with quite large
ones, a8 in the social seienees.  In any caggitbe problem of statistical
inference arises. If an experiment indigdte¥ that a certain hypothesis
is false, the hypothesis may neverthel,es:s remain tenable in the experi-
menter’'s mind if that conclusion s Tiot supported by heavy odds.
The certainty of a conclusion is, eften as important as the concluston
itself in the final evaluation of\a an experiment.

1.4, The Theory and Practice of Statistics. Another division of the
field of statistics w cuth b{lef consideration is that between the theory
and the methodologv 4

The theory of stath 1c8 18 a branch of applied mathematies, Tt has
its roots in an_argdOf pure mathematics known as the theory of prob-
ability, and ifi¥5et the complete structure of statistical theory in a
broad ber1§(\%ay be thought of as ineluding the theory of probahilily.
And it j}\xb’rddes other things not part of the formal theory of prob-
ablhtv—theorgtlca,l consequences of the prineiple of randomization,
va,mus principles of estimation, and principles of fesiing hypotheses.
These principles may be regarded as axioms which augment the axioms
of probability theory.

The statistician is, of course, engaged in producing tools for research
workers. Faced with a particular experimental problem, he constructs
a mathematical model to fit the experimental situation as best he cutl,
analyzes the model by mathematical methods, and fnally devises
procedures for dealing with the problem. He is guided in this work
by the principleg of the theory of statistics.

The statistician is also engaged in developing and extending the

4 =



THE THEORY AND PRACTICE. OF STATISTLCS 81.4

theory of statistics. There are many quite impertant problems of
experimental design and statistical inference which remain untouched
because the theory of statistics is not vet powerful enough to deal with
them. The broad advance in the application of statistical methods
during the past two decades was made possible by far-reaching develop-
ments in the theory which immediately preceded It.

It may be interesting to remark here on the origins of the theory of
statistics. Cerlain areas of hiological experimentation reached a point
where what are now called statistical methods were imperative if
further progress was to be made. The essentials of statistical theori,
were then evolved by the biologists themselves. This parallels, the
patural higtory of almost any branch of abstract knowledge, bubabis
nevertheless curious in the case of statisties. Tor the thCQI‘_‘,{:\Of sta=-
tistics appears to be a very natural development of the theory ‘of prob-
ability, which Is several hundred years old; somehog iBywas almost
completely overlooked by workers in that field.\Tueidentally the
situation which created statistical theory still obtalny; there are many
aveas of scientific experimentation ready and/waiting for statistical
methods which do not yet exist. o\

In contradistinction to the theory of (ghatistics ig the practice of
statistics. Tberc is a great body of toels and techniques for research
workers which expunds appreciabl with the passing of cach year.
Until recent years the statisticiar Wwas not much concerned with these
tools, being content to pass them on to those who wished fo use them.
But as scientific research pgogsrcsses experiments become more complex
and the statistical toolsdecome correspondingly complex and special-
ized. In some areas(bhe time has come when it iz impossible for the
research worker tgdecome familiar with all the tools that might ba
vseful to him. pFarihermore, as tools become morc specialized, they
become less flcxible; to fit a particular esperiment the tool often has to
be modiﬁgsé}s\;nd this requires knowledge of statistical theory.

The, &1'41": of statistical tools is not merely a matter of picking out the
wyenfch‘that fits the bolt; it is more & matter of selecting the correct
ondu6f several wrenches which appear 10 fit the bolt about equally well
but none of which fif it exactly. It is & long step from an algebraic
formula to, for example, a nutrition experiment on hogs. There is
nothing magic about the formula; it is merely a tool, and moreover a
tool derived from some simple mathematical model which cannot
possibly represcnt the actual situation with any greab precision. In
using the tool one must make o whole series of judgments relative to the

nature and magnitude of the various errors engendered by the dis-
b
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crepancies between the model and the actual cxperiment. These
judgments cannot well be made by either the stalistician or the experi-
menter, for they depend both on the nature of statistical theory and
the nature of the experimental materinl.

To meet this development, the upplied statistician hus come on 1he
scenc.  He is to be found in various industrizl and seademic rosenreh
cenbers, and his function is, of course, to collaborate with the rescsreh
workers in their experimentation and investigntion. Ile must be
completely familiar with both the theory and methodology ol sia-

tistics even though his work is concerned not with the ficld of So¥istics
at all but with the field of application. We merely wish Qhohserve
here that applicd statistics has developed to the point WOV miy be
regarded as a field of interest in itsclf, A\

1.6. The Scope of This Book. This book ig ;:(}ﬁcei-ncd witl: the
theory rather than the applications of ST.-LI,tiStiCS.f’}I?’I the course of the
development many tools will be derived and tdiScussed; o gecondary
purpose of the book is to make clear the copditions under whicli certain
of the important statislical tools may beployed. But our primary
purpose is the exposition of statisticalNhéory.

The book is introductory in that\nd knowledge of statistics by the
reader is presumed. And it is &lementary in that no knowledge of
mathematics beyond elementayy® caleulus is presumed. This restrie-
tion of the mathematical leyvels necessarily costly.  We shall have to
omit entirely many intefesting but more technical developments of
the theory; the generality of theorems will be reduced; it will be neces-
sary to make statements without proof from time to time; mathemat-
ical rigor will be sderificed at many points; and ecumbersome arguments
will sometimeshive to be used when very simple arguments at » higher
mathematig\aﬁ}l’evel exist. All these sacrifices, however, will inhibit
our prcsbq’t;xtion rather less than one might suppose. The essential
aspec-{:sj}f the theory are cntirely comprehensible without higher
malftematics,

'“‘&e:i'n’ce statistical theory is founded on probability theory, we shall
Bczgin the study with a consideration of probability concepts and the
development of certain probability theorems which will be required.
Next wo shall congider mathematical models which have been found by
experience to approximatec many common experimental sifuations.
It will then be possible to study matheraatically the problems of
statistical inference and of the design and analysis of experiments and
investigations,

6
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1.8. Reference System. The chapters are divided into numbered
gsections; the numbering begins ancw in each chapter. In reforring
o a section contained in the same chapter as the reference, only the
section number is given. In referring to a section in a different chap-
ter, the chapter number is prefixed to the section number and separated
from it by a period. Thus Bec. 5.3 refers to Sec. 3 of Chap. 5.

The cquations are numbered anew in cach section, and cquation
numbers are always enclosed in parentheses. Merely the equation
number is given when referring to an equation in the same section as
the reference; otherwize the section number is prefixed. Thus cqu\
tion {4.6) refers to the sixth equalion of the fourth section of thy
chapter as the refercnce, and equation (9.1. 12) refers to the stw th
equation of the first section of the ninth chapter. \ J
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CIIAPTER 2
PROBABILITY AND COMBINATORIAL METHODS

2.1. Definition of Probability. Probability is a measure of (he likeli-
hood of occurrence of a chance event., A precise definition Tan be
given in many ways, but for our immediate purposes, thg tdllowing
statement, known as the classical defini tion of probabilivyg Wil suflice:

If an event can occur tn N mulually evelusive and egtgalig} likely ways,
and if n of these outcomes have an atiribute A, then thegprabability of A 4s
the fraction n/N. D
We shall apply this definition to a few simplc"’g\:mmles in order to
illustrate its meaning.

If an ordinary die {one of u pair of dicg):i@ff_:ssed; there are six pog-
sible outcomes: any one of the sjx numberetuces may turn up.  These
8ix outcomes are mutnally exclusivesice Lo or more faces cannot
turn up simultaneously. And, supposing the die to he Jair ov true,
the six outcomes are cqually HEW no one face is any more o be
expected than snother. Now}}’sﬂppoae we want the probahility thut
the result of a toss be an even number. Three of the six possible
outeomes have that atiribnte. The probability that an even numbor
will appear when & {;i&f tossed s therefore 3¢ or Y4.  Similarly, the
probability that s, five will appear when a die is tossed is g The
probability that the'result of a toss will be greater than two is 24,

To considerafrdther example, suppose a card is dratwn at random
from an ordifuty deck of playing cards. The probability of drawing
a spade i*R:r"Bad.ily secn to be '35, or 1. The brobability of drawing
a nlln}bér\betw7cen five and ten inclusive is 2429 or 94,
Thesapplication of the definifion is straightforward enough in these
gtmple cases, but it is not always so obvious. Careful attention must
%e paid to the qualifications “mutually exclusive” and “egually
likely.” Suppose one wished to compute the probability of getting
two heads if a coin were tossed twico., Te might reason that there
wete three possible outeomes for the two tosses: two heads, two tailg,
or one head and one tail, One of these outcomes hag the desired
attribute; therefore the probability is 14, This reasoning is faulty
because the three given outcomes are not equally likely. The third

8
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outcome can oecur in two ways since the head may appear on the first
toss and the tail on the second, or the head may appear on the second
toss and the tail on the firgt. Thus there are four equally likely out-
comes; HH, HT, TII, TT. The first of these has the desired attribute
while the others do not. The corrcet probabilily is therefore 14.
The result would he the same if two coins were tossed simultaneously.

Again suppose one wished to compute the probability that a card
drawn from an ordinary deck will be an ace or a spade.  In enumerat-
ing the favorable outcomes he might count 4 aces and 13 spades, and
reason that there are 17 poszsible outcomes with the desired altribude,
This is clearly incorrect because the events are not mutually exclusive.
The oceurrence of an ace does not preclude the occurrence of A ‘wpade.

We note that a probability is always a number betwech zera, and one.
The ratic n/N must be a proper fraction since the totaMnumber of
possible outcomes cannat be smaller than the number of Ovteomes with
a specified attribute. If an event is certain to hapyen; its probability
is one; while if it is certain not to happen, its probability is zero.
Thus, the probability of obtaining an eight i tossing a die is zero.
The probability that the outcome of tossmg wandie will be less than ten
is one.

The probabilities determined by fhe, classmal definifion are called
a priorl probabilities. When one stﬂtes that the probability of obtain-
ing a head in tossing & coin is ong- -half, he has arrived at this result
purcly by deductive reasoning “The result docs not _requne that any
coin be togsed, or even be at‘hand We any that if the coin iz true, the
probability of a head i Qne -half, but this is little more than saying
the same thing in twos }?f crent ways. N othmg is gaid about how one
can determine “hethm' or not a partieular coin is true.

" The fact thatt \\e shall deal with ideal cbjects in developing the
theory of prebability will not trouble us, because that i3 a common
requirement of mathematical systems. Geometrv for example, deals
with congebtual perfeet circles, lines with zero width, and so forth, but
it ig g uscful branch of knowledge which can be apphed to diverse
practical problems.

There are some rather troublesome defects in the classieal, or a priori
approach. 1t is obvious, for example, that the definition of probability
must be modified somehow when the total number of possible oufcomes
is infinite. One might seck, for cxample, the probability that a posi-
tive integer drawn at random be even. The intuitive answer to this
question is V4. If onc were pressed to justify this result on the basis

~ of the definition, he might reason as follows: Supposc we limit our-
9
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selves to the first 20 integers; 10 of these are cven 50 that the ratio of
favorable events to the total number is 1960 or 4. Again, if the first
200 integers are considered, 100 of these arc even, and the ratio is also
}3. 1In general, the first 2 integers conluin N oven tntegers; if we
form the ratio N /2N and let N become mfinite 80 as to encompuss the
whole set of positive integers, the ratio remains 14,

"The above argument is plausible and the answer g plausible, but. if is
no simple matter to make the argument stand up. It depends, {or
example, on the natural ordering of the positive integers, and wliffer-
ent ordering could produce a different result,  Thus, one codld just
as well order the integers in this way: 1,3, 2;5,7 4,9, 306; - - -,
taking the first pair of odd integers, then the first evén) nteger; the
second pair of odd integers, then the sceond even intgg};r; and so forih.
With this ordering, one could argue that the probability of dvawing an
even integer is 14, The integers can also be ovdered so that the riio
n/N will oscillate back and forth and nevexNipproach any definite
value as N increases, N

There is another difficulty with the cldssical approach to the theory
of probability which is deeper even thaw'that arising in the ease of an
infinite number of outeomes, Suppose we have a coin known to be
biased in favor of heads (it is loaded so that a head ig more likely to
appear than a tail). The twa@ possible outeomes of tossing the coin
are not equally likely. What\is the probability of a head? The class-
ical definition leaves us Ompletely helpless here.

In a situation like thié:céﬁ)ove we shall simply assume that there does
oxigt some deﬁnite‘t igh unknown number which gives the desired
probability.  And e shall asgume that the number obeys the same
laws as the probabilities arising from the classical definition,

We ha,\re.pointed out these difficulties merely to indicate the limita-
tions of exlr &pproach. A complete discussion of these points belongs
properly in a textbook on the theory of probability. There are other
meth\éds of defining probabilities which are logically more sutisfactory
Jhauthe one we have chosen, but ours has the asdvantage of simplicity.
Apd as yet there is no general agrecment among writers an the theory
of probability as to what is the most satisfactory set of axioms for the
theory.

2.2. Permutations and Combinations. The evaluation of a priori
probabilities requires the enumeration of all possible outcomes of a
given chance event. This sort of enumeration can often be facilitated
by certain combinatorial formulag which will be developed now. They
are based on the following two basie principles:

10
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(a) If an evenl A can oecur in @ totel of m ways and if a different
event B can occur in n woys, then the event A or B can occur in m + n
ways provided A and B cannot occur simultancously.

(b} If an event A con secur in a total of m ways and if a different event
B can oceur in n ways, then the event A and B can occur in mn ways.

These two ideag may be illustrated by letting A correspond to the
drawing of & spade from a deck of cards and B correspond to the draw-
ing of & heart. Hach of these events ean be done in 13 ways. The
number of ways in which a heart or & spade can be drawn is obviously
13413 = To illugtrate the second principle, suppose two cards
are drawn hom the deck in such a way that one is a spade and the dther
is & heart. There arc 13 X 13 = 169 ways of doing this, smﬁe\mth
the ace of spades we may put any one of the 13 hearts, or w 11‘h\the king
of spades we may put any onc of the 13 hearts, and su‘crn for ull 13
of the spades.

The Lwo principles may clearly be generalized ’m\take account of
more Lhan two events. Thus, if three mutually eXclusive events A
B, and (' can ocour in m, 7, and p ways, respeefively, then the event A
or B or € can oceurin m + # + p ways, an&\thv event A and B and C
can occur in map ways. ¢

We shall now use the sceond of theqe pimmpks to enumerate the
number of arrangements of a set of ij cets.  Let us consider the num-
ber of arrangements of the lct‘terq & b, c. We can pick any one of the
three to place in the first posmon el‘rhu of the remaining twe may be
putb in the second pt)altxon,gnd the third position must be filled by the
unused letter. Thc g/of the first position is an event which can
accur in three ways; th(]%Hm;: of the second position is an event which
can oceur 1n two Way« and the third event can occur in one way. The
three eventz cdn) Ny together in 3 X 2 X 1 = 6 ways. The six
anangement«;,%r permutaitons, as they are called, arc

’~‘\ abe, ach, bac, bea, cab, cba

\thas <ﬂmple example the elaborate method of counting was hardly
worth while because it is easy enough to write down all the six permu-
tations. But if we had asked for the number of permutations of six
letters, we should have had

EXHX4AEXBX2X1=T20

permutations to write down.
It is obvious now that in general the number of permutations of #
11
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different objects is
n(n — 1)(n — 2n—-3) - - - (2) (1}

The row of dots indicates omission of intermediate factors. This
product of an integer by all the positive integers smaller than it, is
usually denoted more bricfly by n! (read n factorial). Thus 2! = 2,
31 =6,41 = 24, 51 = 190, ete. Since

nl

(r — 1t ==X
it is eommon to define 01 ag one, so that the relation will be ¢ofsittent
when n = I, O\

Let us now enumerate the number of permutations that’may be
made from n objects if only r of the objecls are used 0 any given
permutation. Reasoning as belore, the first positieh may be filled in
n ways, the second position may be fillod in # — L ¥vays, and so forih,
When we come to the rth position, we willhawve used » — 1 of the
objecls so that n — {r — 1) will remain fram*which we can choose,
The number of permutations of n objectsgaléen r at a time is therefore
nn— Jn—2) -+ - (n—r+ D. «The symbol P.. is used to
dencte this number.

R

Pir=nfn =1 —2) &% (n—r 4 1) = 1!

o B0
Thus the number of permutations of the four letters a, b, ¢, d taken two
at a time is P,, = 4 % #2='12. On putting r = » in equation (1),
we get the rosult stuted(ehrlier: that the number of permutations of #
objects taken n at a Viie i3 !,

With the aid of dqitation (1) we can now solve the following problem:
In how many diffetent Wways can r objects be sclected from n objects?
Py, counts alDflie possible selections as well as all the arrangements of
cach selection or combination. Two combinations are dilferent if they
are notdmude up of the same set of objects. Thus abe and abd are
diﬁgrgh‘f: three-letter combinations, while abe and bae are differcnt

Nrﬁutations of the same combination. Let the symbhol (n) denote
i

the number of diflerent combinations. Then it is cloar that P, , equals

('r) times 7!, since each combination of r objects has ! arrangements.
Therefore
7 :.fn__,___n(n—-ﬂ(n—m---(n—r-{—l)_ nl
r r! 7l ~rln =)t @)
12
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Another common symbol for this number is s, but we shall not use
it in this text. The number of combinations of five objects taken three
at & time is

The number (j’) may be given a different interpretation. It is the

number of ways in which n objects may be divided into two groups, one
group containing r objects, and the other group containing the other
n — r objects. Now suppose we wish to divide » cbjects into “three
groups containing 7., nz, s objects, respectively, with O\
A\
ny -+ g T+ iz = « M
We shall first divide them into two groups ctmtainingmﬁl and na + ns
. . . fn N .
objects. This may be done In ({; ) ways. Then'ge may divide the
1
gecond group into two groups containing 7, andhts objects. This may
. . A A
be done 1n (ﬂz :— ns) ways. Using the¥egond prineiple of enumera-
2 £

tion, the total number of ways of doing the two divisions together is

ny {ne + nay _ AN (re + ng)! _ n!
A1 Ty ny iy + na)t nzing! 1 e 725!

This type of argument Hta} be carried further to find the number of

ways of dividing n objects into k& groups containing ny, #e, - -, M
objects with n1 -+hg + - ° - + ng = #. This number is readily
found to be 4
£ D !
N n!
\‘ m!ng! ot ?’Ek! (3)

Thus thé}number of ways of dividing four objects into three groups
cqpf,ainiﬁg 1, 1, and 2 objects is
4 41

\ e~ 12

The expression (3) also has a second interpretation. Tt is the num-
ber of different permutations of n objects when ni of the objects are
alike and of one kind, ns are alike and of a second kind, and so forth.
Referring to the numerical example above, there are 12 permutations
of the letters @, b, ¢, ¢. 1In order to see that expression (3) gives the

correct number, consider # different objects (for example, the letters
13
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a,b,¢, - -, p)arranged in a definite order. And consider a division
of this set of objects into & groups, the {irst group contuining n, ol ects,
the second 7y, and so forth. Now in the oviginal wemingement of
objects, replace all the objects selected for the gt gronp by ones, all
those selected for the sceond group by twos, and so forth,  The resalt
will be a permutation of =, ones, #e twos, © - - oy M A jitle
reflection will convince one that every division of the lotters into Lhe &
groups corresponds to a different permutation of the integers, and 1hat
this is the total set of permutations, because if there were another,
there would be another division of the Tetters into k groups.

We bave derived threc formulas in this section, nol ©u% beruuse
they are useful but because their derivation serves ’1:.(1:\:11[151".[1150 the
application of the two principles of enumeration givemat the beginaing
of the section. Tt is the methods that are imporfant. . The formilas
will aid in solving many problems, but they aregeless in many others,
and one must then fall back on the elerentaug Iﬂt'in(:iples.

Hlustrative example: Tt two cards arc (‘h‘;t%‘ﬁ from an ovdinary deck,
what is the probability that one will beﬁ.\s‘pade and the other 4 heart?

Since nothing is said about the ordemin which the spade and the heart
should oceur, this is a problem i combinations. To compufe the
probability, we must find the .tjég'tal number of possible outeomes of
two-card draws, and then ﬁrjfl'the number of these that have the
specified attribute, The total number of two-card combinalions that

can be made up from 52 cards is 522 = 1326. And we have secn

before that there ar}HS X 13 = 169 different combinations with the
required attribyies” The probahility is therefore 169{356 = 13{pa.
This problemeould also be solved by regarding the different two-card
permutatiofges the set of possible outcom es. The denominator of the
ratio WO\QCI then bo Psay = 2652, To get the numerator, we consider
that gqb’h of the 169 two-card combinations has two permutations and
get.29X 169 = 338 as the number of permutations with the required
ﬁtt;ribute. Or we may start at the beginning as follows: The num-
\er of permutations in which the spade oceurs first and the heart
second is 13 X 13 = 169 by principle (5). And the number with the
heart first and the spade sccond is the same. Fither of these sets of
permutations sutisfies the specification, By principle (a) the required
number is 169 4 169 = 338, Again we find the probability is 13{,.
1llustrative evample: What is the probability that of four cards drawn
from an ordinary deck, af least three will be spades?
Here again we are interested in combinations. The total number
14
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ol possible four-card combinations is (Sf) = 270,725. To get the

numerator: the specification, at least three spades, means either three
or four. The number of four-card hands containing exactly three

gpades is (1.3'3) 89 = 11,154; the first factor is the number of three-card

combinations of three spades, and the second is the number of ways
u card may be sclected from the other three suits; the product is taken
in accordance with principle (). The number of hands with all (mds

spades is (15) 715. By principle (@), the number of hands Wlth the

required attribute is 11,154 + 715 = 11,869, The required pgoba?bﬂ-
ity iz 11,869/270,725,

One might attempt to find the numerator by the f ollomng method

The number of three-card combinations of spades&a (133 ) = 286,
The fourth eard may be either a spade or not a gpdde, and after three
spades have been selected, the fourth card ma;%e selected from the
whole set of 49 remaining cards. Thus the r}qmred number of hands
is 40 % 286 = 14,014. This argument i faulty because the hands
with four spades have been countedmore than once. A specific
three-card combination of spades i3 ”AI&Q, and when the jack of gpades
is drawn from the remaining 49 ededs, we have the combination AKQJ.
But we also count this combiftation when the AQJ iz considered and
the king is drawn from thg“&maininu 49 cards. It is now eclear that
the hands with [our spades ‘have been counted four times in the above
figure. Wo can obtaihythe correct result by subtracting from it three
times the number 6f hands with four spades. The result is

\:\ ’ 14,014 — 3 (4 = 11,869
a8 before

I llusﬁmtmw example: Seven balls are tossed into four numbered boxes
so‘i\hat each ball falls in a box and is equally likely to fall in any of the
boxes. What is the probability that the first box will contain two
halls?

§ince the first ball may fall in any one of four ways, the second may
fall in any one of four ways, and so forth, the total number of possible
outcomes is, by principle (b), 4”. To enumerate the number of out-
comes with the desired attribute, let us first divide the seven balls
into two groups, one containing two and the other five balls. This

15
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may be done in (;) ways. Now the group of two will be put into the

first box and the other five distributed among the other three hoxes,
This may be done, by the same reasoning as above, in 3¢ ways. The

é) 3%, and the desired

7 .. .
(2)3 7 X 38 i \

T T =311 O\

number of favorable outcomes is thercfore (

probability is

(The symbol 2¢ is used to denote approximate equality?)\

2.3, Stirling’s Formula. In finding numerieal \;;il‘ii't:s of probahili-
ties, one is often confronted with the evaluation of ddtlg factorial expres-
sions which are troublesome to compute by divest multiplication. If
an adding machine is available, and there adé'hot a great number of
factors in the expression, it is often cofienicnt to use logarithms,
However, when the fuctors becomahi merous, this method also
becomes tedious, and much labor ,nigiy’ be saved by using Stirling's
formula, which gives an approxim@te value of n!. It is

E XY

7! % 2m grpnt¥ (1)

where ¢ is the Napierig:f{ base, 2.71828 + - - | A much more accu-
rate approximation,miy be obtained by replacing the factor e by
gTIr—liem] pyg tlli‘s\tr&‘lnement is rarely used, 7To indicate the accu-
racy of the forrquﬁa.,’ We may compute 10!, which is actually 3,628,800.
Formuls (1) usifg five-place logarithms gives

'\n

% o 10! 2= 3,599 000
N
The nigre refined formula gives:
4 .\" Y
& i 101 2 3,629,000
\/ |

The error in (1) for n = 10 is a little less than 1 per cent, and the
percentage error decreases as n increases.

2.4, Sum and Preduct Notations. A sum of terms such as ng -+ ng4

7
+ 75 4 75 + n; I8 often designated by the symbol E 7. The Z
- . - £=3
18 the capital Greek letter slgma, and in this connection it is often
called the summation stgn.  The letter 7 is called the summalion index.
: 16
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The torm following the Z is called the summand. The i = 3 below =
indicates that the first term of the sum is obtained by putting ¢ = 3
in the summand. The 7 above the = indicates that the final term of
the sum is obtained by putting ¢ = 7 in the summand. The other
terms of the sum are obtained by giving ¢ the integral values between
the limits 3 and 7. Thus

5
3 (—1) e = 20% — 32° + 42t — 5z

=2

£n analogous notation is obtained by substituting the capital Gree}
letter I1 for 2. In this casc the ferms resulting from substitufifig the
integers for the index are multiplied instead of added. Thusy

5. . ¢ N }"
a & . —_— i g. a— E ”.’4 f— §
1o )= (=) )0 - ) (5
Using this notation, expression {2.3) derived prebwusly may be written

/Hn. '.j.’\

2.5. The Binomial and Multmomial “Theorems. The expansion
of the binomial expression (z + g% Is given in elementary algebra
courseg, and g proof of the corre(‘tncqs of the expansion ig ordinarily by
induction. We shall herc expand the binomial by a simple combing~
torial method which readﬂ}\genemlucs to the IIlllltanmld..] cage, If
we write the binomial 11\t~hc form @+ yzF+ ety - - &4y,
which has n factors, the problem of finding the coefficient of one of the
terms, say x"ysreduices to the problem of finding the number of ways
of dividing the ﬂ\factors into two groups. The first lerm of the expan-
sion is &7, ‘hoekis obtained by selecting the z {rom each of the factors.
The nextsterm is some coefficicnt times x> "'y. This term arises by
selecting: the z from n — 1 of the factors and the y from the remaining
ong. (The one from which ¥ is taken may be chosen in any of n ways;
hénco the coefficient of a#~'y iz #n. In general, to get the coeflicient
of z"—oy°, we must count the number of ways of dividing the » factors
into two groups so that one group contains a factors and the other
n — a factors; y is selected from each factor of the first group and «
from each factor of the second group. The number of ways of dividing

the n factors into two such groups is (:)J which is the desired coeffi-
17
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cient. The binomial expansion is thercfore :
- " .
(x _I_ y) no— 2::1 + '”-x“ - Iy _|_ (2) '.rr.- —IH.’. e _E_‘ yn

The multinomial theorem follows diveetlv,  if {he CXDIEEsloN

(T4 2e - o o A

is multiplied out, one will obtain terms of (he form

o N
2 )
NS
\/

Clepags + « -

where C is some coefficient and the exponents 58Uy the relution

k LV

E e = nGN\J
We wish to determine (. Terms of e given form urice when 2y 18
selected from n, of the n factors, 03 clected from ns of the remaining
factors, and so forth. The nu;nhfflr of ways of getting such a lerm is
equal to the number of wayslof ‘dividing the » factors into I groups
containing ny, ny, - - -+ | m}fﬂctors. This is expression (31 of See. 2
Thus the general term oftthe multinomial expansion is

4 &
b AT
nt . g
o o D \ TRt SR or nl ﬂ -
Flyttale '\"" nrl A Hi.
\ =1
and we may, Write
A\ ko
£ ) £
S CTN oE- P R A L Z 2! ] = @)
\Y Rt o k i=1 7

Wp'}}ave indicated only that the summ

..

ation is over the indices n,, %s,
oo, M. The range of each index is zero fo n, but they cannot all
“\“be summed independently over that range because we must have

N\

"
Y ni =n. The summation is over all sets of values of ny, n,, "
i=1

ni such that their sum is # and such that each »; is an integer in the
range zero to n inclusive. The sum is very troublesome to write down
when # is large. We shall fllustrate it for a simple case.

4!
@1 + @2 + 2}t = E e ARy
m.ng.nsl

Rine,ma

18
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The sets of values of (n,, ns, %5} which satisfy 1 + ny + ns = 4 are
(4; 0: 0): (31 l: 0); (37 0: 1)5 (2! 2: 0); (2; 1, l}: (2; 0, 2): (1: 3J 0)} (1; 2:_1)_;
(1,1, 2), (1, 0,3), (0,4, 0, (0,3, 1), {0, 2, 2}, (0, 1, 3), (0,0,4), The
sum therefore has 15 terms, the firgt few of which are

a1 471 41
($1+$2+$3)4= x4 |$1$1+ T1£3+2|ZT ried + - - +4— ]

= i + 4oty + dwdzy + GaZal 4+ - - - 4zt

A set of numbers such as (3, 1, 0) is ealled a three-part partition ‘of
four. (2, 6) iz a two-part partition of eight. The 15 triplets of T~
bers listed above form the complete set of ordered three-part pamtwns
of four. The partitions are called ordered because the same, (wmbma-
tion of three parts in a different order is counted as a dJﬂeren‘b partition.
If it is not specified that the pariitions be ordered, the inbrdered ones
are assumed; thus, the three-part partitions of four aresimply (4, 0, 0),
3,1, 0} (2,2 0), (2,1, 1). Interms of the idea)ol partitions, the
multlnomlal sum (2) may be deseribed brleﬂ as\ fellows: the sum is
taken over all ordered k-part paltltlons of n, e parts being (n,, ns,

‘n;;) N

2.6, Combinatorial Generating Functmns The enumeration of
possible outcomes and of cutcomes wgth % certain attribute can become
quite a complex problem. In factyitis casy to state problems in which
the enumeration is practically dmpossible. One of the most powerful
deviees for solving enumersgt;iﬁﬁ problems involves the use of what are
called generating function¥ \The subject of combinatorial generating
functions is a field of mgbhematics in itself, and we shall consider only
a few simple cases here “We wish merely to indicate the nature of this
method of ana,lys;s\~

Let us congidét the last illustration given in Sec. 2 where seven balls
were tossed ifitd four boxes, and consider the function

o
&

~O° (@1 4 @2 + 25 + z)"

The coefficient of a term such as z3x$z; in the expansion of thiz multi-
nomial is given by formula (2.3) ag 7!/2141110!, which is just the num-
ber of ways of dividing seven objects into four groups so that the first
contains two objects, the second four, and so forth. 8o any term in
the multinomial expansion gives a description of a possible outcome; a
factor such as f means five balls have fallen in the /th box, and the

numerical coefficient of the term gives the number of ways in which
19



§2.6 PROBABILITY AND COMBINATORIAL MITHODS
that outecome can occur. If the z's are now all repliecd by ones, the

1
terms become simply 7!/ 1 nat, and to get the whole sl of possible

i1
outeomes, we need to sum this expression over all seis of Lhe ity whose
sum is seven.  This sum by the multinomial theoren; i Ju=t

(L1414 1) =7

If we want the probability that the first box cont:ins fwo balls, we
shall sum 7!/11n:! over all sets of mowhich have ny == 20 Paduls rewrite
the term as O\

{ o
7! 5! N\
_ S

2151 ny gt

7%
!

and now we wish to sum this over all sets suqb'\thz’mt N2 12 + 1y = b
If we multiply 5!/n.tnalng! by I7ele = welhive the general term of
{1 + 1 4 1)%; hence the desired sum is INZIST times 38,

The function (&, + =5 + 23 + 2,7 44 simple type of generating
function; it is an algebraic expressidﬂ:\vhich is given an interpretation
in terms of the physical problem wbhand. 1t may be used to answer
any of the questions that may be asked about the physical problem to
which it is related. Thus,.jf'&t-he number of ways in which the first
twa boxes can each contaiftat least two balls is required, we would add
the coeflicients of all f#¥ms in the generating function which have
and z; with powers {gfeater than or equal to two.

Now let us cokﬁidér another problem. An urn contains five black:
and four whitepalls, The balls are all drawn one by onec from the
urn, and the@irst three drawn are placed in & black box while the last
six are plagedl in a white box. What is the probability that the num--
ber of blaek balls in the black box plus the number of white balls in
the yb}\Nt-e box is equal to five?

'Jﬁfe may solve this problem by considering the balls of each color to
L. (Be'numbered. The total number of ways of dividing the nine objects

"™ ‘ 0
N\ Into two groups, the first contaming three and the second six, Is (3)

To get five balls to match the color of the box containing them, we
must elearly have two black balls in the black box and three white

ones in the white box. The black box may be filled (g) (‘11) ways

gince there are (2) ways of picking two black ones from the five black
20
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4 )
ones to be among the first three drawn, and 1) ways of choosing one

white ball to be among the fixst three drawn. The probability is

B /4 9

2/\1 / 3/

The following generating function may be related to this problem:
(it + 22)%(x1 + wat)?

Here z; corresponds to the black box and =z, to the white one. The
first factor corresponds to the five black balls, and the second tothe®
four white balls. We shall consider the coefficient of the term ianlv—
ing #f2f. Tt will be a polynomial in ¢, and if ¢ were put equal$o one,

tA W
the polynomizl would have the value (3), since then we ghptld have

the coefficient of x3x in (&1 + z2)%. The coofficient g{é"in the poly-
nomial is the number of ways in which r balls can’fallin boxes of the
same color as the balls. In forming a term ing§§, we may choose
certain of the z,'s from the factor (xf + xg)%in}i the remainder from
the other factor.  Those chosen from the hrs} factor represent black
balls, and thosc chosen from the second represent white balls.  Thus,
when 2 black ball is associated wilth gligéblack box, we get a factor ¢,
and when a white ball is associated Jith the white box, we also get a
factor £, The power of ¢ then gives the total number of times a ball
iz associated with a box of 1{5 color. On expanding the generating
function, one would ﬁn{'\fhé coefficient of 232$% to be (;) (T) ag
before. O

The gencrating funétion is of no value for this simple problem, but
it becomes uscfubif more than two colors are considered. Thus sup-
posie an urn egﬁi?ﬁined 7y balls of a given color, ns of a second color, and
ng of a third evlor; and suppose my are drawn and placed in a box of
the first.Golor, ms are then drawn and placed in a box of the second
(:olor,«giu\d the remaining balls, say m; of them, are placed in g box of
the third color. Let # be the total number of balls; then

7 =01+ "+ N = My + ma + ms
The coefficient of 27Tyt in the function
{21t + 22 + za)™ (21 + 22t + gy 2y + T2 + 2at)™

gives the number of ways in which r balls mateh eolor of the box con-
taining them. The coefficient is difficult to caleulate in this case, but
21
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to find it is a straightforward procedure, while to find it without the
generating function is considerably more troublesome.

We shall consider one other kind of generating function. 1Ii five
dice are tossed, what is the probability that the sum of the spots will
be 157

Since the first die may fall in six ways, the second may fall in six
ways, and so forth, the total number of possible outcomes s 6. Now
we need the number of these outcomes that have a sum equal o 1),
In the case of two dice, it is easy to write down all possible FafaBina-
tions which give a specified sum. Thus to obtain a sum dive, the
two diee may fall (1, 4), (2, 8), (3, 2), (4, 1). These aneh ordored
two-part partitions of five when zero is excluded as, .a;:‘f)'arl‘ Lie s
problem we must enumerate all the ordered ﬁve-pzryﬁ partitions ol 15
which have all parts between one and six inclugjaia, ™

In problems involving partitions of numb@dthere is a0 generaiin iy
function which will usnally materially simeiy the enumeration. lor
the particular problem of counting t-he,siééxys of getting 15 with five
dice, let us consider this function: \/

(0 4 22 + o R 25+ 29)s W

It is a polynomial in ¢ in whicl;f‘ghé term of lowest degree is &% and the
ter.m of highest degree is &% Let us suppose that the function is
wntten as the product offive factors instead of as a fifth power. ‘The
first factfjr will be asspotated with the first die, the second factor with
second die, and so % In the expansion of the funetion there will he
2 number of terpis & 5; one, for example, will arise when z is seloeed
from each of tH@fitst three factors and 2 is selected from the remaining
two facto' Z“This.situation corresponds to the appearance of 4 one
:E thg ﬁfmj;:thrce dice, and a six on the other two. It is readily scen
‘at~ }Q&re 15 & one-to-one correspondence betwoen the ways =15 ean
avige n the expansion and the ways the five dice can total 15, Henee

ourtrequired number is the coefficie 18 i
oty ed mu ot ot of ' in the expansion of the

following identity:

L — g»

Tz =lFeta+ o g (2)
which may be veri inlv:
this ¥ be verified by multiplying hoth sides by 1 — 2. Using

identity, the generating funetiop may be put in the form:-

x-'—'(]_ — xﬂ).“)

A (]_ —:‘E)—éd
22
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We may omit the factor x® and find the coefficient of 2% in what
remains. Now we need another identity: :

e Qe ()
_ E (n—l—::— l)xi @

i=0

which reduces our problem to that of finding the coefficient of !0 in | \

zt)3 2 (4"!’@) 7 .\\\
= ) O

If the first factor is expanded, all but the first two tcrmbiﬁaj‘v’e rtoa
higher power than 10 and may be neglected. And no\ withe problem
becomes that of finding the coefficient of 2'? in G

=g : N
(1 - 5ad) Z (4 T ’3)3—,6\;.\
which has two terms in #'%: one when the 1 15 multlplled by the term

given by ¢ = 10 in the sum, and the other ‘when the — 5zt is multiplied
by the term given by 7 = 4 in they ﬂum The ¢ocflicient is therefore

3

(14) -5 (i), and the proba@lity we set out to find is
+8J

10
(18Y _, (5)
Ao 1) 65
N\ & ~ 7T
PR o 0837

These exaﬁglés will serve to indicate the kind of attack that may
be made On enumeration problems by means of generating functions. -
The me¢h0d is powerful, but we cannot develop it here. We merely
wish bo/ point out the cxistence of the method.

_2.7. Marginal and Conditional Probability. Suppose that there are
n cqually likely possible outcomes of a ehance event, and that they
may be classified according to tiwo criteria. Thus the event may be
the selection of & ball from an urn in which all the balls are colored
and all are numbered; the possible outcomes may be classified accord-
ing to color, or according to number. In general, suppose there is an 4
classification with r classes which we denote by A, 4, - » - , A, and

23



§2.7 PROBABILITY AND COMBINATORIAL METLODS

a B classification with s classes denoted by By, By, - - o B, Thean
outeomes may then be classified in a two-way talle as follows:

By B B.
A} T | Rz Tiie
Az | nay | nae Tiay
O\
O\
Ay | 7y 1 sz Pra ‘\ N
Here we have indicated that ny of the n outconfes":h:we Loth ithe
attribute 4, and the attribute Bi; n1s have bothﬁth’e attribule . and
the attribute By; and in general 75 of the cut¢umes have the altrilades

A; and By, The sum of all ny is =.

the drawing of a card from an ordinar, ¢ déck of pl
52 outecomes may he classified according to suit (say A, As A, 0,
according to denomination (say By,

every ny; is one, N

As an @xample we may consider
aying curd=.  The

aly

By, -+, By). In this example

The probability that the eﬁéht will have a given specification, 1,

and Bs, for example, will begénoted by P{41, By}, and the v
probability is obviousl(hw/n. In general,

T P B

N

Wemay bedrterested in only

nay omne of the criteria of classification, sav i
and mdliffegeﬁt t0 the B classification.

the S{I;ZEE&)!, and the probability of A,

ahae of this

Eias]

bl
In this case B is omitted from

say, is written P(4,), and

Q) Py = 2t b mag + - 4oy,
:n\ . n
NN 8
A% =
ieom
F=1
Ti]us 18 called 3 marg:ina:l probability, and the term marginal is used
:«]'1 ac:;neve:r Ole or more eriteria of classification are ignored. 1t is clear

P4, =

L]
iz

=

24



MARGINAL AND CONDITIONAL PROBABILITY 82.7
or

P(4) = 3 P4, B) (1)

i1

sinee ng/n = P{4d, B;). Also the marginal probability of B; is
P(B;) = Y P(4; By) (2}
i-1

Thus the probability that a chance event hags a specified attribute is
the sum of all the probabilitics of events that have that attribube)
The probability that a card be an ace is the sum of the probahilitiés
that it be the ace of spades, the ace of hearts, the ace of dmmoudg, dnd
the ace of clubs. N\

In a more general gituation, suppose there are three ('rlteria of classi-
fication, 4, B, and €. Let n; of the n possible outcl&mos havc the
specifieation d;, By, Cx; and let the € classification be (v, Cy, - -0,y
with the 4 and B classes the same as before. Thecomplete classifica-
iion would be a three-way table consisting of ¢ la@gers of two-way tables,
each layer corresponding to a2 €. The mafgmal probability of, say,
Aiand €y 18 o\

P, C) = 3 BN, B, O @)

.?I.

and the marginal probability n{ O is

p(ch\ >‘ Y P(4y By C) @
AO7 = § P G (%)
N\ d==1 ‘_
\’x,..: . \
o = ¥ P(B, ) (6)
o i=i

)
The eth-énsion of these ideas to more than three criteria of clagsification
is apparent.

Returning to the original two-way classification, suppose the out-
come of a chance event is examined for one attribute but not for the
other. We wish to find the probability that the other atiribute has a
specifled value. The event, for example, may be cbserved to have the
attribute B;.  What is the probability that it alsc has the attribute 4,?
The total number of outcomes for 4 given that Bjs has oceurred, is

25
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2 g, and the number of favorable outecomes for L, nre Thus
i=1
. /o
the probability of As, given that By s ocenrred, bs o L s
: ]
This is ealled a conditional probability and is denoted b il symbol
P(44Bs). In general

P(A{B) =

N O\
My v N
P(Bj|Ay = 5% O
J=1 AN °
Qn dividing both the numerator and dcrlonlitlut«"?i:.\uf the franction on the
right by n, we have )
- P(4RY
P(A{By = ZldaoB; 7
i __P_‘W (7)
PB4, 5 Elds B) ®)
or in another form . N ‘
Pl4sB) = P(4yByp(B, ()
) < = P(BJ[A‘)P(A.) (10)

E;:eliit eqlia'_téon % bhe StateEd: the probability that ap outeome will
4, mult?pi[é{fbl'ltih : &nd.% '8 equal to the marginal probability of
J oceurred, \‘Y ¢ conditional py obability of B; given that 1, has

The ide ot conditiona

. DI‘Oba.bﬂity hag & straj htf . . -
to {iong i : ; Entiorward exieonsion
Situglidris mvd‘?ng more than twq criteria, of classification. Tn the

eas:e::é‘f\ e eriteria, for example, it may be shown directly that
O P4, Bjlcy = P4, B, i)
Q O = s o
BB, 0 < P4, B, )
also that - F(B G Y
(4 B, ¢3) < pa, BlCoP(cy) (13)
= P45, COP(B;, ¢ (14)

= P(AijBf; Ck P L0953
2 > PP BICHP(Cy) (15)
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and other similar relations could be obtained by permuting the letters
A, B, €. 'Thus

P(Bjl4;, C) = & Eﬁ:&f’c";)m (16)
and .
P(4;, By, Ci) = P(Bj|A;, C)P(A|CR)P(Cy) amn
or
P(A; By, Ci) = P(BjlA, Co)P(Ci|d)P(4:) (18)

We shall not take the space to write out all such possible relations, bt
the student would do well to do so, These relations are fundamental
in the theory of statistics and must be well understood. K )
In defining conditional probability we have used a rather ctpe‘cla,llzed_
model. But it is apparent that the idea is quite general " Let X he
any subset of the whole set of possible outcomes, and let Y be any sub-
set of X; then O
_ P(Y) \

PY|X) = m X\\
for if ¥ is the total number of cutcomes, nﬁ; #he number in X, and m
is the number in Y, then P(¥V|X) = ?'n,r"nJ P(Y) = m/N, and

POY ‘.=._’ .

2.8. Two Basic Laws of Probablhty The two laws correspond to
the two prineiples of enumeration discussed in Sec. 2. The additive
law of probability states that

If A and B are mutdaly exclusive subsets of the whole set of possible
outcomes of a chancobent, then the probability that the event ocours in A
or B is equal to tﬁb\pmbabahty that it occurs in A plus the probability
that ©f occurs
Symbohcally,\»e may write this as

:’\." P(4 or B) = P(4) + P(B) (1

Thls\hm follows directly from prineiple (@) of See. 2. 1In general, if
Ay, Ay - -+, Ay are mutnally exclusive subsets of the whole set of
outcomes, then

P(d;0r Ayor As « + - or 4,) = 2 P(4) (2)
i=1

The marginal probability defined by (7.1) is a special case of this rela-
tion. The specification 4; is fulfilled by the subsets Ay, By; Ay By
a7
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-+ ; 4; Bs; hence
P{d;) = P(4;, Bior 4;, By + - - or Ay, B

- ¥ P(4, B)

i=1

K the two subsets 4 and B of (1) arc not mutually exchisivie 1 hen
(1) is no longer true, In this case, certuin outcomes have Lol 1he
attribute 4 and the attribute B. We may interpret Lhis in terma of
the two-way classification given at the beginning of See. 7. S UTRIEENT
we want the probability that the outcome is in A; or £, A CWhsts
of the first row of the table and By consists of the seeond caftwile,  The
outcomes in A4,B, satisfy both specifications, and thu e oo sots
Ay and B, are not, mutually exclusive. The probahi\li{f{g that e our-
come fulls in A, or B, is easily caleulated by adding.ull i i the diest
row and second column and dividing by . NS

& L
2 Ry Z n.‘g'\\:
P(Ai or B2) = —]'—__,_L_'\;’
% “.:
2 . :,;'
zl:nzi"jf% 2 Mar — my
= a) 1

N 7
u:_: P(A_l) + P(Bg) - P(AL, Bz) (3)
This gives us a more getleral law of addition of probabilities.

I A‘ and B are Sodets of the set of outcomes of a chance crent, the
;?robabzlztff! that thesevénl occurs in, A or B is equal 1o the probability that
it occurs in 4 _ﬁufs the probability it pceurs i B minus the probuhit ity
that it 0ccurs@h both A and B, o |
The situpjgi&l 18 illustrated in Fi
event Sréwepresented by points i
by two Circles A and B, Certaj
common to hoth circles, and in adding the outeomes in bo

“these pointg are counted twi
] . Vice and must theref, ,
Symbohcﬂ.ny’ the additive lay i retore be subtrg,

w P(A or B) = P(A) —}-P(B) — P(A, B) (1)
e Ing ali . .
ths Y generalize this gy to account, for more than twq subsets;

P(‘”’ILOI'BOI'C) =

g 1, where the outeomes of a chance
1 3 plane and two subsets are enelosed
R outeomes fall in the lenticular region
th circles,
cted onee,

s BB, ) + P(4, B, ¢) (5
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a8 1s casily verified by drawing a figure similar to Fig. 1 in which three
cireles interseet g0 as to have a region common to all three. The gen-
eral law for & subsets, which may be proved by induction, is

Pldyordy» - - ordy) = E P(4) — 3 P(4 4))

i=} 57
+ Y Py Ay A — - - £ PA Ay, - - A (B)
gk
W h(‘re the second sum is over all combinations of the numbers 1 3
. b taken two at a time, the third is over all combinations of, t‘he

[

FIC:. N

numbers taken three at a tlmé, and so forth. If all the subsets are
mutually exclusive, then che probabilities in the sums beyond the
first sum are zero, and {6) reduces to (2).

We have essentiallyderived the multiplicative law of probabilities
in defining conditiohal probability in the preceding section.

If some of the puloomes of a chance event can have both the atfribufes A
and B, the pr@bsls{y of sueh an occurrence is equal to the probability
of A mifétzpfwd by the conditional prebability of B given that A has
oceurrad (0% it s equel to the probability of B multiplied by the conditional
proba‘b\hty of A given that B has occurred,
in symbols,

P4, By = P(A)P(B|4) (7)
= P(B)P(4:B) (8)

We may refer to the model given in preceding section, or wo may use
the model of Fig. 1. Let n be the numbor of points in Fig. 1; let m,
be the number of points in 4 (including those common to B}, ms be

the number in B, and m; be the number common to 4 and B.  Then
29
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M3
P(4, B) = 2
e
P4} = ry
= M
P(B) = .
M3
P(AB) = e
N\
3
P(BlA) = s O
NS ¢
whenece (7) and (8) follow directly. . A
In general we may show by induction that O
Pl Ay -+ 42) = PUDPA AP ol EDPLELLL 1 12
o P(;’l}; :'11,"42’ Ty, A H ( )

and there are A! such relations which mt@‘\be obtained by pf‘”‘-‘ri” ng
the letters in the right-hand side of ‘(9');\ The two relations for / = 2
are given by (7) and (8). QO

2.9. Compound Events, Thetmultiplicative 1
particularly useful in simplifying the comput
compound events, A congpeund event is on

aw of prohalilities is
ation of probabilitios for
e that consists of {wn or

Two balls arg d AW, one at a time, from an urn containing two

black, three white, and four red balls.  What is the probahility that
the first is’Yed anq the second is white? (The first is not replaced
before thc}}éeond is drawn.)

'F{I'\‘uutcomes of
to O criteria; the

ball We may ther a table like that at the beginning
Wof Sec, 7. The 4 classifiestion cor

responds fo the colop of the first

" ball, and we ghall |t Ay, Ay, 4, torrespond to the colorg black, white,
and red, I‘GSDth-iVely._ Similarly the clasges B, ng By will COI‘I‘(!SD('!nd
to the same colors for the second ball, The total number of outeomes
BR=9X8=72 Kot (g)

permutationg,
be red and on

this compound event may bhe ¢l
color of the first, ball, and the ¢
efore constryct

assified according
olor of the weeomd

= 36, because we are consiclering
not arrangementg ;e

W are not asking that one ball
e white; we Tequire thg
3

t the colors appear in a speeific
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order. The complete table of outcomes is

B]_ B-g Ba

A | 2 6| 8§

A, i 6 612

A | &8 |12 12

and tho probability asked for in the problem is
P(ds, By) = 1245 = 1§ .\:\

By using the multiplicative law of probabilities, we need Qn’l}? con-
sider the two separate events one at a time. Here we must ise the
law in the form D
P(ds, Bs) = P(A)P(Bal4s) o\
Now P(A4;) is simply the probability of drawing a red ball in a single
draw, which is 4¢, and P(B.[4;) is the probabilityyof drawing & white
one, given that a red one has already been dra}m, which is 3. The
product of these two numbers gives the required probability

P(ds, By) = 46 %' = 1%
The validity of the above tcchamigue is not obvious. It is not

immediately evident that the mazgitial probability P(43) can be com-

puted by completely disregariiing the socond cvent, nor that the
conditional probability c@esbonds to the simple physical event
deseribed above. \

For a compound evenb-Consisting of two single events we need only
consider & 2 X 2 tab:lé. Let 4, correspond to a success on the first
event, and A, Q@(]%Spond to a failure, and let m, be the number of
way® the first €went can succeed, and m; be the number of ways it can
fail, Let Bi.: and B: be similarly defined for the second event. Let
miq and #11s be the numbers of ways tho second event can suceeed and
fail ifthe Tirst suceeeds, and let ms and ms, be the number of ways
the second ean succeed or fail if the first ovent fails, The 2 X 2 table
is

B]_ BQ

Ar | muma | Mantgs

A

MMty | Mol

k2
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§2.9 PROBABILITY AND COMBINATORIAL METIHUDS
The total number of possible outecomes is
=t mamie + Matie + ey,

The required probability is

P(4,, By) = M (1)
n
The marginal probability P,y is ~
K Lt G D B e Y )
% # my(niny + el + g (e —+ gy b

Now the probability of 4 success on the first event wWitHout, regari] to
the second is sImply mi/(my - my), which is not @@rial to the alove
CXpression unless N

my + My = my )
N

Le., unless the total number of outcnmges&'c’ﬁ' the second event is the
sanue regardless of whether or not the firstevent is a success.  The con-
ditional probability is m,,/ {mu + myp) and gives the probability of a
success for the sccond event undetithe assumption that the first was a
suceess, A

We might be inclined to «conclude that the c.onditional~pr(_)b&bility
approach is correct only if the number of outcomes for the second cvent
i independent of t e'\iﬂﬁt-come of the first event. Precisely the
opposite is true. Bhe eorrect probability is

AV my M1
R I e @
and not ‘Efli,x’mlue Mama/n glven in equation {1).

The §aluc computed by the conditional approach is always correet,
\x’bi]e’that computed by enumeration of outcomes is correct only if the
mMuniber of outeomes for the second event is independent of the outcome
of the first event,

A simple example will clarify the situation. Suppose a coin is tossed,
and i a head appears, & black ball is placed in an urn, while if a tail
appears, a black ball and a whitg ball are placed in the urn, Then s
ball is drawn from the urn.  If a head ig tossed, the ball will neces-
sarily be black, Using @, T, B, W to represent heads, tails, black, and
white, the three possible outcomes of this sequence are HB, TR, TW.
These three outeomas are clearly not equally likely. If the experiment
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COMPOUND EVENTS §2.9

were repeated a number of times, we should expect the outcome HB
to ocour twice as often as either of the other two. P(HB) = 14, not
1s

In general, the possible outcomes of s compound event are not
equally likely if the number of outcomes of the socond event depends
on the outcome of the first: hence the definition of probability is not
applicable. ITowever, if the definition can be applied to the constitu-
ent events separately, then it is possible to compute the probability
of ¥he compound event by using the method of conditional probabili-
ties. Unfortunately, it is not possible to give a formal proof of thode, >
statements. We must simply rely on our intuition, or rather om“the
import of whatever experimental evidence we mMAay DOBEESS Sach
evidence may be obtained, for example, by performing the Mbove-
described experiment a number of times, SO

Hlustrative example: To illustrate further the method{of/conditional
probabilities, let us compute the probability that of-five cards drawn
from an ordinary deck, exactly two will be aces.

We shall suppose the deck consists of four A’s%presenting aces, and
48 N's, representing not aces. To use conditional probabilities, we
must assume the five cards ave drawn qn'e: at a timo, and we must
assume a particular order such as A, A, AN, ¥. We shall use equa-
tion (8.9) with k = 5. N

po 8
™
N *

P(4, A, N, N, N) N
= PAIPAJOPIM, YPWNIA, A, NIP(VA, A, N, N)

) .
Now P(A4) = 454; with on&gec removed from the deel, P(414) = 3¢,
with two aces removed fom the deck, P(V]4, 4) = 43¢y, Proceed-
ing thus, N

P(A, 4, My, N) = 465 X 341 % 4340 X 4745 X 484

This is the p{‘%ability for the given order, but the problem did not
specify gaysorder, so we must consider all possible orders. There are
51/(203W = 10 permutations of two A’s and threc N’s, 80 we have
10 probabilities to evaluate, and the required probability, by the
additive law, is the sum of these 10 probabilities. Tt is soon apparent,
however, that all the probabilities are equal. Thus, for example,

PN, 4, N, N, A) = 4355 X 451 X 4740 X 464y X 34g

which is the same as the above number except that the numerators are

permuted. Clearly this will be the case for all permutations. Henece
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§2.9 PROBABILITY AND COMBINATORIAL METHODS

the required probability is
10X 4 X3 X 4T X 46
10P(A, A, N, N, N) = 52 % 51 % 50 % 40
o= 0399

Tndependent Evenis. T the conditional probability P(B|A) is cqual
to the marginal probabililty P(B), the events A and B arc suid 10 be
independent. The outcome of B ig not influenced in any way by A.
Thus a die may be tossed twice, and we may scek the probability that
the results will be two and three in that order \

N

P(2,3) = PP(3]2) = P2PB) = 14 X 14 \.\“.\

In the illustrative example involving two sces in five (;.MEIH the five
constituent events of the compound evenf will be md‘( pendent. if we
require that each card drawn be replaced in the wcfe{‘,l\ and the deck
shufled before the next card is drawn. Thelprobability that the
second card will be an ace is then 440 instead o 351,  The probability
that two aces will appear when five cardsgx{é rawn with replacement
18 NY;
10(%2)?(4%2)% & .0465

In general,

If the constituent cvents of comp@und event are mutually independent,
the probability of the compound évent is equal to the product of the probubil-
ities of the constituent events
We may write this in t\‘@.f‘orm

3
P({‘lu Ao v Ay = 1 P4y ($
1=1
provided that .\ o)
I\AJ =PAdA; - - - 4,y foralli g, - -, p

Tt is 1mp91tant to remember that this probabilily is the probability of
ocguftence of the separate events in a specific order,

\The additive law of probability given by equation (8.6) can also be
used to simplify materially certain problems in compound cvents. A
striking example is provided in the following:

Iustrative example: 8ix cards are drawn with replacement from an
ordinary deck. What is the probability that each of the four suits
will be represented at least once among the six cards?

We shall solve the problem by finding first the probability that all
the suits do not appear. Let A symbolize the appearance of all the
suits, and B symbolize the nonappearance of at least one of the suits,
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COMPQUND EVENTS 52.9
Qince ecither 4 or B is certain to happen,
Pd or B) =
and since 4 and B are mutually exclusive,

PAorB) =PA) +PB)=1
and
F(d) =1 — P(B)

Thusg, if we can find P(B), P(4) can be determined at onee. A\

To gt P(B), let us classify the possible outcomes favorable to B into
four sete: By 1s the set of all outeomes in which spades are ab@erkt\Ba
is set for which hearts are abscnt; Bs, diamonds absent; Ba'clubs
absenf. These sets are overla.pping; an outcome Whjclfk ~é.‘qnsists of
only spades and hearts falls in By and in B, Clearly<:~.

P(B) = P(By or Bs or Bs or B
and cmploying cquation (8.6) e\

&

\
P(B) = ZP(B;) — 2P(B,, B;) 4+ ZP(B, :B?,‘B;v) — P{By, Bg, By, By)

in which the sums are taken over a-llcpmnbmat-mns of the subscripts.
The probability £(B.) that a spade Will not appear in the six draws is
(34)%, and the valuc is the same foail B;; hence

ZREB) = 404)°
The probability P(B,, . that neither spades nor hearts will appear

in the six draws iz (14)%and is the same for all gix pairs of the four suits
taken two at a timelicnee

"\\ ZP(B;, By) = 6(}3)°
Similarly N\
O SP(B,, By, By) = 4(14)°
and N

\'”\; P{B], sz B3’ Bd) =} )

sinee the simultaneous nonappearance of every suit is impossible.  The
required probability i3, therefore,

P(A) = 1 — 4(30)° + 6(})° — 4(4)°
,381
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A slight alteration of this cxample will illustrate another useful
technique.
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§2.10 PROBABILITY AND COMBINATORIAL METHODS

Tllustrative example: Cards are drawn one at a time with replacement
from an ordinary deck until all suits have appeared al least once,
What is the probability that six draws will be required?

Referring to the preceding example, let P, denote the probability
that all suits will be represented at least once if n eards are drawn,
Clearly

Poo=1 =404 + 6(1s)» — 4(L)»

Now suppose we knew the answer to the present problem [or a nm@nl
value of n.  ILet p, denote this probability (that exaetly n dw AN will
be required to produce all the suitg), O\

If n cards are drawn, the first appearance of cach suit gttt once
may occur on the fomth draw, or the fifth, or the \I\U‘L *md 50 im th,
Bince these ontcomes are mutuwlly exclusgive, we hay N

A\
Po=ps+ps+ps4+ - —|—pn

¥rom this relation we conclude that AN

pn = IJR - Pﬂ’-'I\“
and in particular that

ps = 1 — 4(29)° + 6(14)° ~ 4(1@6 [L— 440 + 604)5 — 4047
= 00° = 309 +300)°,
o 147

2.10. A Priori and Em\pirical Probabilities. In introdueing the
theory of probability\\é have relicd heavily on the combinatorial
definition given in the first section of the chapter. However, we have
seen that this approach has severe limitations, and the QUCHT}IOII ariges
as to how usefmbsuch a theory may be.

A theory(df“statistics based on a priori probability would indecd
have vepy mited usefulness. While there are a fow practical sitna-
tiong i m which such a theory could be used (the field of geneties provides
one '1J:11p0rt:3,11t area), the great majority of fields of application oecur
where a priori probabilities do not exist., Our theory must be general-
ized, and wo shall do it quite arbitrarily, We shall simply assume the
existence of certain probabilities, and we shall assume that they obey
the same laws as do combinatorial probabilities. We may congider
the coin, mentioned earlicr, which is known to be loaded in favor of
heads. We shall assume that there is a number which gives the correct
probability of a head, though one cannot gay what the number is.
We can, however, estimate the number. We may toss the coln a
large number of times and divide the number of heads by the total
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A PRIORI AND EMPIRICAL PROEABILITIES §2.10

number of tosscs. This if 62 heads appear in 100 tosses, we would
estimate the probability to be .62, This estimate is called an empirieal
probability.  We shall not make the error of stating that the eorreet
probability of a head is .62, because we know that if the eoin were
tossed 100 times again, the number of heads might well differ from 62,
The empirical probability is merely an estimate of what we think of
a3 the true probability, We shall gee later that the estimate can be
muide more and more accurate by increasing the number of trials in the
experiment.

We may observe that we do not need to postulate the existence afa®
probability for every imaginable situation, We may as well A
ourselves to operationally meaningful situations. That is, e, SHall
net assume the cxistence of 2 probability unless it is pOSSIb]E‘ ta'set up
an experiment by means of which the assumed prﬁba.blht‘j can be
cstimated.  Heferring to the question, mentioned in thé\ﬁrbt section, of
drawing an even number from the whole set of pofifive integers, we
do not need to assume that such a probability exidts. For there is no
way to cstimate it; we cannot build an walarge enough to hold

balls numbered 1, 2 3, + + + ad infinitum’ or\em rent procure the balls.
Clearly this kind of hmlt ation in the theory will not limit its practical
application. N

Cur position then is this: We devélep the theory by thinking about
ideal ceins, ideal dice, ideal random drawings from an urn, and so
forth. And we admit the existence of prohabilities which have no
a priori basls, provided t}ge}\ can be estimated. We speak of the
probability of a head B&nE one-half when a coin is tossed. But
faced with an actual goin, we refuse to say what the prohability of a
head is.  If the coin(dppears homogeneous and fairly symmetrical, we

may guess that ,Khe probability is somewhere near one- -half, but we
shall not be syrpvised if a long series of trials indicates that the prob-
ability i son&wherc between .57 and .58, for example. We shall not
hesitate tumake statements of the following kind: whatever the prob-
ability pymay be, the probablhty of a tail is I — p, the probability of
twoshgads when the coin is tossed twice is p?, the probability of & head
and a tail in either order when the coin is tossed twice is 2p(l — p), and
goforth. Thus, we shall use our laws of probability on p.

The justification for these assumptions (that noncombinatorial prob-
abilitics cxist, and that they obey the same laws as combinatorial
probabilities) is siraply that they work., A great mass of experimental
evidenee supports the assumptions, while no evidence has ever been
brought forward which seriously controveris them.
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§2.11 PROBABILITY AND COMBINATORIAL METIODS

- 2.11, Notes and References. The development of the theory of
probability began in the seventeenth century and lins continued stead-
ily to the present day. It is thevefore an old and now fuirly extengive
branch of applied mathematics. The subject Lind = origin in games
of chance, but it brought forth such a variely of interesting problems
that many eminent mathematicians were ativacted to i, Ty there
is likely more work being done in this ficld thun ever before, and this is
due in large part to the rapid developments in statisties.

An excellent modern textbook on probabilily theory is J. V. 1kpen-
sky, “ Introduction to Mathematical Probabilily,” AleGraw-UiMiook
Company, Inc., New York, 1937. & \))

Ny

2.12. Problems \

~ L. An urn contains three white balls and soven Jark ones.  What
is the probability that one drawn at random wilBe white?
» 2. If two coins are tossed, what is the probability that o hewd and
a tail will appear? A
+ 8. If a three-volume sct of books isgplaced on a shelf in random
order, what is the probability that the§ »Will be in the corvect order?
< 4. What is the probability of gb’é’aining three hieads if three coins
are tossed? What is the probability that at least two Leads will
appear? N
#B. An urn contains threg"white balls and two black ones.  What i
the probability that twoballs dravwn from the wn will both be white?
v 6. How many thrégldigit numbers can be formed with the legers
1, 2,3, 4,5, if duplication of the integers isnot allowed? If duplication
is allowed? /)
7. How mang*three-digit numbers can be formed from 0,1,2 3,4
if duplication,is not allowed? How many of these are even?
8. InAeW many ways can a committee of three be chosen from
nine meh?
M9."\.'I‘here are five roads from A to B and six roads from Bto ¢". In
th.i' Many ways can one gofrom 4 to C via B?
10. How many different sums of money can be formed with one each
of the six kinds of coins minted by the United States Troasury?
11. In how many ways can six girls and four boys be divided into
two groups of two boys and three girls?
12. In a baschall league of eight teams, how muny games will be
necegsary if each team is to play every other team twice at home?
13. How many football teams can be formed with 12 men who cun
blay any line position and 8 men who can play any back position?
38
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14, How many signals can a ship show with five different flags if
there are five significant positions on the flagpole?
15. How many license plates can be made if they are to contain five
symbols, the first fwo being letters and the last three integers?
16. How many diagonals are there in a twelve-sided polygon?
17. How many dominoes are there in a set from double 0 to double
127
18, What is the probability of getting a seven with g pair of dice?
~"19. What i the probability that two cards drawn from an ordinaryy
deck will be spades?
. 80. What is the probability that a five-card hand will contain emctly
tv o aces? At least two ancea?
~ 21, What is the probability that a bridge hand will be %‘complete
guit?
~ 22, Anurn contains four white, five red, and six black; bﬁﬂq Another
contains five white, six red, and seven black balls. Qde'ball is selected
from eachurn. 'What is the probability they will b\éof the same eolor?
«" 28, Show that ( ) (n i , \
/24, In how many ways can n different 6b]9('ts be divided into &
groups containing ., m, e, W ob}ects, if
iy 4 7+ - é‘nk—n—m‘?
/ 26. An urn con’ra:ms m white and n black balls. % balls are drawn
and laid aside, their 00101 mu\otu‘ed Then another ball is drawn.
What is the probahility ¢ t’lq white?
J/ 26. Bix dice are tossedy hat is the probuability that every possible
number will appear? s\
/27, Seven dice afe tossed. What is the probability that every
number appgarq?\\
/ 28. What 15‘\151(16 ‘probability of getting a total of five points with threo
“dice? "
w 28, An\}‘lm contains ten balls numbered from one to ten. Four
ballsérs drawn, and supposc z is the second smallest of the four num-
berz drawn. What is the probability that & = 3?
_~30. If n balls are tossed into k boxes so that each ball is equally
likely to fall in any box, what is the probability that a specified box will
contain m bhalls?

31. Bhow that i CX{ = i X,‘.
32. Show that H CXs = o (H X"

§i=l
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33. Show that (i X.-)2 = E E X.X;
F=1

2r+1 e i
84. Show that [[ (X +n+1 -4 = [] vz — 4.
i=1 i=1
36. Find the cocllicient of 25¢? in the expansion of the binomial
(22 — ay)®.
36. Find the coefficient of 4229 in the expansion of the trinomial
(22 —y — 2)". N\

87, 1f six balls are tossed into three boxes so thal vaeh i mqually
likely to fall in any box, what is the probability that all b will be

oceupied? X O
38. The corners of a regular tetrahedron are nunthered coe, two,
three, four. Five tetvahedra are tossed. What B'the projability

that the sum of the upturned corners will be 123.’”;.\

39. The spades and hearts are removed frémt o deck of curds and
placed face up in 2 row, The 1'emaining'c';z~}ds are shuflled and dealt
face up in a row beneath the row of spades and hearts.  What is the
probability that all the clubs will be™hEneath spades?  Whut ig the
probability that among the 26 paie§, of cards, 16 pairs will consist of
cards of the same ¢olor? N

40. Six cards are drawn fromiah ordinary deck. What is the prob-
ability that there will he one pair (two aces, or two fives, for example)
and four scattered card8? That there will be two pairs and two
scattered eards? \\i’

41. The face caxds“are removed from an ordinary deck and the
remainder dividedinto the four suits. A card is drawn at random from
each suit. Wh%b% 18 the probability that the total of the four numbers
drawn is 207 ¢

42. An\ben contains three black balls, threc white ones, and two
red 01183‘3- Three balls are drawn and placed in a black box, then three
mopecare drawn and placed in a white box, and the remaining two are
gl“‘lig thared box. What is the probability that all but two of the balls

11 fall in boxes corresponding to their colors?

43. An urn containg four white and five black balls; a second wmn
contains five white and four black ones, One ball is transferred from
the first to the second urn ; then a ball is drawn from the second urn.
What is the probability it is white?

4. In the above problem suppose two balls, instead of one, are

transferred from the first 1o the second urn.  Tind the probability that
a ball then drawn from the second urn will be white,
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46. If it is known that at least two heads appeared when five coins
were tossed, what is the probability that the exact number of heads
wag three?

46. If a bridge player has seven spades, what is the probability that
his partner has at least one spade? At least two spades?

47. 1f a bridge player and his partner have eight spades between
them, what iz the probability that the othcr five spades are split
three and two in the opposing hands?

48. A bridge player and his partner hold all spades except K, 3, 2.
What is the probability that they are split K and 3, 2 in the opposing
hands? What is the probability that K or K, 2 or K, 3 or X, 352,
appears in a specified one of the fwo opposing hands? A

49. A person repeatedly casts a pair of dice. He wing if he casts an
eight before he casts o seven. What is his probability of Winning? -
Nore:t+zx+ 22+ 28+ - - = 1/(1 —a),if lz| <O

650. In a dice game a player casts a pair of dice fvice” He wins if
the two numbers thrown do not differ by more thah two with the
following exceplions: if he gets a 3 on the firgt th.fm\-‘, he must produce
a 4 on the second throw; if he gets an lf~om the first throw, he
must produce a 10 on the second throw. {What is his probability of
winning? N !

51, The game of eraps is played “'it;h: two dice as follows: In a par-
ticular game one person throws theedice. He wing on the first throw
if he gets 7 ar 11 points; he loses on the first throw if he gets 2,3, or
12 points. If he gels 4, 5, 6,.8,'9, or 10 points on the first throw, he
coutinues to throw the d@ repeatedly until he produces either a 7
or the number [irst throfn ;'in the latter case he wins, in the former he
loses. What is his proBability of winning?

62. In simple 3-'Teléaelian inberitance, a physical characteristic of a
plant or animal ig Qetermined by a single pair of genes. The color of
peas is an exagihple. Letling y and g represent yellow and green, peas
will be gree’;l:i the plant has the color-gene pair (g, ¢); they will be
yellmy\if’ihe color-gene pair 18 (y, %) or (y, 7). In view of this last
comBination, yellow is sald to be dominant to green. Progeny get one
gene from each parent and are equally likely to get cither gene from
each parent’s pair. If (¥, ¥) peas are erossed with (g, g) peas, all the
resulting peas will be (y, g) and yellow because of dominance. If (y, ¢)
Peas are crossed with (g, g) peas, the probability is .5 that the resulting
peas will be yellow and is .5 that they will be green. In s large number
of such crosses one would expect about half the resulting peas to be

yellow, the remainder to be green. In crosses between (y, g) and (y, g)
41
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peas, what proportion would be expected to he vellow?  What pro-
portion of the yellow peas would he expectod to be iy, g0

63. Peas may be smooth or wrinkled, sud thig s o =insle AMendelian
character. Smooth is dominant to wrinkled co thal (s 0 sund {3, )
peas are smooth while (i, @) peas are wreinkled, 1 14, G0 Lel ) pens
are crossed with (g, g) (i, w) peas, what are the possible outeomes and
what are their associwted probubilitios?  or the Lioar (v by
(g, g) (s, w) cross? Forthe (y, ¢) (s, 1) by (o, ¢) (o ary croas?

64. Albinism in human beings is o simple Mendelin wiowmeter.,
Let a and n represent albino and nonalbino; the Lutder b= c{a»}]\;izu:ailt, 80
that normal parents cannot have an albino ehild unless ]x\fl?il.-.r-v.f (n, a).
Supposc that in a large population the proportion of g winies = p and
the proportion of a genes is ¢ = 1 — P, =0 thut r;f‘fft"’l!-u- midividuals
are albinos. Assuming that albinism is not o 1':11((:%-' i il selevtion of
marriage partners or in the number of childrodoSid pariienlin naarriage,
what proportion of individuals of the RESE gencration weadd be
expected to be alhinos? If albinos m:{“rzi}nf only albine= and had as
many children on the average as nonalMhos, what proportion of indi-
viduals in the next generation wéuld be expeeted 1o be albinoes?
What would happen eventually &the population if albines continued
generation after gencration telmate only with albinos (as=ume num-
ber of individuals in each gengration is the sanie) ?

66. It is known that afi™urn was filled by casting a die and putting
white balls in the UI'I}{B@MELI w number to that obtained on the throw
of the die. Then blaek balls were added in a number determined by a
second throw of ghe die. It is also known that the iof al number of
balls in the u:g‘naié'éight-. What is the probahility that the urn contains
exactly fiveswhite balls?

» 06, Urt& contains two white and two black balls; urn B coniains
three white and two black balls, One ball is transferred from A to B;
one ball is then drawn from B and furns out to be white, What is

i Al probability that the transferred ball was white?

N\ 57. Each of six urns contains 12 black and white bhalls; one has 8
white balls, two have 6 white balls, and three have 4 white balls. An
urn is drawn at random, and three balls are drawn without replacement
from that urn. Two of the three are white; the other is black. What
i8 the probability that the urn drawn contained 6 white and 6 black
balls?

58.. Three newspapers, A, B, C, are published in a certain city. It
is estimated from g survey that of the adult population:
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209 read A
16 read B
149 read ¢
© 8% rcad both 4 and B
5, read both A and ¢
447 read both B and
244 read all three

What percentage reads at least onc of the papers? Of those that read
at least one, what percentage reads both A and B?
69. Twelve dice are cust. 'What is the probability that each of the <\
six faces will appear at least once? A
60. A die iz cast repeatedly until each of the six faces appea;l(“{%
least once. What is the probability that it must be cast ten um a7

A
3
B
N\
N
AV
N
O
“‘\\ >
R\
N
Q
N\
~O
W\
PO
N\Y
th
&
AN
)
N4



CHAPTER 3
DISCRETE DISTRIBUTIONS

3.1, Introduction. TIn Chap. 2 we were concerned with finding the
probability of a specilic outcome for a certain chanee event.  In this
chapter we shall be concerned with o complete set of probahildles, A
simple example will introduee the idea.  What ix the proLtwlity that
 heads will appear if four coing are tossed ? Denoting thyypiHhability
by f(x) (this is the funectional nofation}; Q

7%
<

. (%) L7

J@y =L 0 < g sy (1)

2t )

\\
We have a function which tells us direelly what the probiability is
for any valuc of z in its possible rangghwhich is zero to four inclusive.
The function gives the complete set ol Hrobabilities for the given char-
acter (number of heads)., We maycaleulate the funetion by giving &
each of its possible values, and™we may then plot the funclion, asin
Fig. 2, using vertical lines of Tength equal to f{x) on some scale.  Since
one of the values of z is celtam to oceur, the sum of the set of probabiii-
ties must be one, hecaQdh the probability of zero ar one, or fwo, or
three, or four heads, isequal 1o the sum of the sepavite probabilities.

A 4

A ! = 2
“\';\.” zéo fz) =1 {2)

The quQtri’on of f(x) is called a disercte probability density funetion, or
dist-ri&zzfc:s“on Sunction. We shall usy ally refer to % more bricfly as
simplysa density or a distribution. It is useful fo thing of f(z) as piving
hé Melative frequency of occurrence of the separate vulues of v, Thus,
sUppose the four coins were tossed a very large number of times.  We
should expect no heads to appear {(z = () in about one-sixteenth of the
tosses; wo should expect one head to appear (@ = 1) in ahout one-
fourth of the tosses, and so forth.  The graph of the density makes a
number of things immediately evident: that the most likely number of
heads is two, that one hesd can be evpected Lo oe X

cur ahout four trmes
as often ag no heads, that 1hree

heads ean be expected to oceur whout
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ag often as one head, and so forth. The word “about” is used because
we are familiar with the fluctuations that accompany chance events.
Thus, if a single coin is to be tossed ten times, we expect five heads
and five tails on the average, but actually some other division of heads
and tails is quite likely to occur in & given trial.

f‘(x)[
0.50
N
A s
¢(\A
AN
& N/
N
0.25 7\
AN
D
l‘\ v
0 ! 2 N4 X
Tre, 208 )

The results of an actual cxperiment in tossing four coins are given

in the {ollowing table,

humber of heads counted ord épch toss.

N\
REsvirs p\y}oa&sma Focr Comvg 160 Tiuvss

N

¢ ~N{ifnbcr

Actual Expectad
,”\' of heads OCCUITENCES | OCourrences
£ "\ W
N 0 6 10
«\ 1 41 40
NS p) 56 60
@ 2 3 45 40
\ 4 12 10
160 180

Foulezoins were tosged 160 ilimes and the

The agreement between actual and expeeted oceurrences is none too
good (it is to be remembered that the probability of a head may not
have heen exactly one-half for each of the four coins uctually used), but
still the general character of the distribution of actual outcomes was
fairly well indicated by the distribution function f(z).
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§3.2 DISCRETE DISTRIBUTIONS

Knowing the density function of some attribuic ¥, we ean supply
the answer to any probability question pertaining 1o . Thus rofer-
ring again to our particular example, the probability of Lwo heads is

() s

Pz = 2) = J(2) =

28Ty
The probability that the number of hewds will be dess thun three is
o Q.
Pl <3) = _}j,u Fe) =114, O\
F N

The probability that the number of heads will be betwden one and
three inclusive is A

0
¥

b

3
Pl <z<3)= L flo) =
=1

T
%

. AN .
Given that the number of heads on a speeiffbuteome is tess than four,
the conditional probability that the nuiher is not more than two is

Pl <2z g:.’év)':'= =
"y al
...<“ xéﬂ

The symbol P(- - ) Wi@dlways be uzed as it has been used here and
may be read * the pxoh bility that . . . " Thusin the lust couation,
the symbol represents this phrase: the probability that » is less than
or equal to twag ’g,iven that o is less than four. A vertical bar uzed in
the symbol ‘\@n\always mean *“‘given that”” or “when it is known that”

and will preeede the specifiad condition of a conditional probability.

3.2, Ql‘?iscrete Density Functions. The essential properties of dis
cretg.gieﬁsity tunctions have already been suggested in the preceding
ﬁ‘tgon, and we need only to describe them in somewhat more general
languape.

The set of possible outcomes of a chance event are classified into 2
number, say &, of mutually exelusive clagses acceording to some attri-
bute. Associated with each class is a value of a random variable, or
varigte, x. The density function is a function of x which gives the
probability that any specified value of z will oceur,

The variate z may naturally des

. : : cribe the attribute, as was the case
in the coin-tossing lustration, or

it may simply be a code. Thus in
46
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drawing balls from an urn, the classification may be according to color.
We could define a random variable & by arbitrarily setting a corre-
spondence between values of z and colors: z = 1 corresponds to black;
z = 2 corresponds to red; and so forth., When a rod ball is drawn, the
variate has the value two.

The density function may be a mathematical expression involving z,
as was the case in the preceding section, or it may be only a table of
values. Thus if an urn contains three black, two red, and five white
balls, we may code the colors 1, 2, 3, respectively, and find the proba-
bilities .3, .2, and .5. We do not bother to construct g mathematical
expression which will take on these values when x is put equal to 1\; 2

and 3, but merely tabulate the function: .\
1 2 3 ~“
flx): 38 2 5 RS

The word discrefe is nsed to distinguish the variateftom confinuous
variates, which will be discussed in the next chapi}p%t: A variate x js
diserete if it can take on only isolated values, 1.6, Successive possible
values of z are separated on the x axis. The distinction will be brought
out in more detail in the next chapter. o\ o

The set of probabilities represented by, density function will always
have a sum equal to one because we shallspeak of & density only when

v& all the possible cutcomes are inclitded among the separate classes
of outeomes, ¥) the classes are mantually exclusive.

3.3. Multivariate Distributién! When the outcome of a chance
event can be characterized more than one way, the probahility
density function is a funefioh of more than one variable. Thus when
a card is drawn from aghOrdinary deck, it may he characterized accord-
ing to its suit and 10 denomination. Let z = 1, 2, 3, 4 correspond
to the suits in sg)zée\’f)’rder (say, spades, hearts, diamonds, clubs), and
lety = 1,2,3, %" , 13 correspond to the denominations, A, 2, - - - |
10, J, Q, K<f "The probability of drawing a particular card will be
denote({b;g #(, ¥} and clearly

Jo =250 1<e<41<y<13 1)

This function may be plotted over a plane as in Fig. 3; the probabili-
ties are represented by vertical lines st the points (z, %) in the hori-
zontal plane where the probabilities are defined. In this case, gince
the function is a constant, the lines are of equal height,

To consider another example: Let four balls be drawn from an urn

containing five black, six white, and seven red balls. ILet 2 be the
47
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numbe‘i' of white balls drawn and ¥ be the number of red balls drawn.
® density is

LG 2
LN —x— gy
x = s M :

4
and its graph is shown in Fig. 4.
defining & third vandom variable,

0<a+y<4 {2}

In this example, we might consider

#, Lo be the number of blaecl balls
48
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drawn, and obta’ a trivariate distribution. But z is exactly deter-
mined by 2 and ygince z =4 — ¥ — 5. No new information can be
obtained by adding z to the set of random variables characterizing the
‘outcomes, and, in fact, if 2 were included in the distribution funetion,
the set of probabilities represented by that function, flx, ¥, 2), would
be exactly the same set that we have already obtained using z and .

)
0.25
o K
2 AN
N
N/
o | 2 3 X 4
< 3 ¥
1
2 N
"
3 AN
AN
¢\J
4 \\
X N \
O Fic. 5.
AN/

A simpler example’of functional dependence is that of tossing a coin,
say four times, {_Let z be the number of heads and y be the number of
tails. Since@+ y must be cqual to f our, the variables are functionally
dependeg\tf,‘f'knowing one, the other iz exactly determined. The

densi%y{is’
i, v) = (f;) (%) (%) 24y =4

and its graph is given in Fig. 5. It gives us no more information than
the function uged as an example in Sec. 1; the set of probabilities ig
exactly the same as before. '

We have used the terms dependent and independent in two entirely

different connections. In Chap. 2 we defined two events to be inde-
49



§3.3 DISCRETE DISTRIBUTIONS

pendent if the conditional probability of one, givén the other, was
equal to the marginal probability of the first. Wo shall in the future
refer to this kind of indepondence as tndependence in the probebility
sense. Returning to the urn example: z and y are Frnctionally inde-
pendent (since y is not uniquely determined when « is known), bul they
are dependent ¢n the probability sense (as we shall sec).

In the urn example, the marginal density of z 1s found by applying
the definition in Sec. 2.7 (i.e., Sec. 7 of Chap, 2), and is

. N\
fa) = ) flz,4) = Q—-(i]‘i“—) 0.8 @

Zo (1_18) O

The sum may be performed by means of an @g:ébmic wlentity, but

here it is simpler to consider the problem anesgs one involving ;5 white
balls and 12 that are not white. Similarly\}he marginal density of yis
P\

(?) (\n )
- ) =t}— y
fy) = ny) =XV <oy 1
() x;f( =" <y< (1)
R
This function is plotted"ianig. 6. The height of the line at y = 0,
which represents 7(0), is'etual to the sum of the lengths of the vertieal
lires along the z axi§ 0 Fig. 4; f(1) is the sum of the lengths of the
vertical lines alongthe line ¥ = 1lin Fig. 4, and so forth.

The conditionabdensity of z, given - y 18 defined exactly as in Sec. 2.7
and is denoteddby

Geow = f@ )
el =T33

;;.j\ (6) 5
A -z —y

<\3... 11 0S$S4-—y
(4 - y)
Bimilarly
@G-z
HUDERYA ik 2k 2 WY

(:2.)

If = were given some specific value, say ¢ = 1, we could plot the density
) 50
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F(y|1) by giving % its successive values: 0,1, 2,3, The vertical lines
would have the same relative heights as those along the line z = 1 in
Fig. 4; their lengths would be increased by the factor 1/f(z) evaluated
for g = 1 so that the sum of their lengths would be one. We observe
that f{yle) is not equal to the marginal distribution of ¥, so that y and
ave not: independent in the probability sense,  Of course, the fact that
[{yi#) involves z is suflicient evidence thai the two variates are depend-
ent in the probability sense.  If, however, we had an example in which

S(y) : A
o U S
,\"\
&
0.25 A\ 3
K&
\\“
4
> 1
0 ] 2 ¢ 3 4 ¥
RN TN

J(ylz) did not involve z,itwould still be possible for the two variates
to be dependent becauge:,the range of ¥ might depend on 2. If both
f(ylz) and the ranggofy do not involve 2, then the two variates will
obviously be indepepdent in the probability sense.

As an example of a distribution involving several variates, suppose
12 cards aredrawn without replacement from an ordinary deck, and
let bqngﬁe‘number of aces, 3 be the number of deuces, 2; be the
numbenuf treys, and zs be the number of fours. The distribution of
these Variates is given by a function of four variates and is, in facs,

CIEYEIE) Gy %)

f{xlg Loy Lyy -’54) = — -
o
(%)

where the range of each variate is 0 < ; < 4 subjeet to the restriction
&1
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. L ..
that Zz; < 12, There are a large number of marginal ard conditional
distributions associnted with this distribution; a few examples are

() (et )
RS A Vi1 12 — @y — x5 0< <4
f(m, M) = - 52') o+ 2y <8
12
() (22
) N\
fley = N E 0 < <1
KON
() O
f(ﬂ?'z,ih]ﬂ?l,-’tfs)

(4 (4)( - >
Lo} \T4 12 —FL e ay — Ty D < 4

44 RN L TR R
12 — £y — Z3 ,’\\:

7

the first two being marginal distrildlons and the third a conditional
distribution. The distribution f(A,)%s, 23, 2.) itsclf may in this case
be regarded as a marginal distriBwtion of some more detailed distribu-
tion, for example, the sixwgr’i}?&te distribution of zy, xa, @, s 25 6
where 25 and z; are the nuibers of fives and sixes that appenr among
the 12 cards drawn.

We cannot plot thé'}\)ur-va.riate distribution; in fact, we have used
all three dimensions\of conceplual space in plotting bivariate distribu-
tions. This cotld have been avoided by using a different device; we
might have wkGd dots of different sizes rather than vertical lines and
thus pictuzed the bivariate distributions in two dimensions. This
methgﬁ}fmld not have given ag clear a representation of the relative
maguititde of the probabilitics. Using the dots, we could gof. a pie-
torfal representation of a trivariate digtribution, but for more than

,.\tﬁree variates no simple graphical representation is possible.

N/ The probability that random variables will fall in any region of their
space is obtained by summing the density function over all points in
the region. Buppose a bivariate density f(x, ) 18 defined forz = 0, L,
2,--+,randy =0,1,2, - - - |5, The probability that z < 5 and
y < 3 is obtained by summing f(x, ) over the region defined by the
inequalities (the rectangle in Fig, 7).

4 3
P(-C<5:3JS3)= E Ef(x;y)

=0 y=0
b2
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The probability that the sum of z and ¥ ig® let%‘rhan 5 ig equal to the
sum of f('r: y) over all points within the ‘m@ngle bounded by the line

Y= ‘3‘«'
Pz +y < 5) = f(0, 0} + f(1, ®~+f(2 0) + (3, 0) + f(4, 0)
70, 1) A 70, 1) + 12, 1)+ 53,1
+ (0, 23@ 7, 2) + 2,2

+f6§\ 8) + 11, 3)

28 Y sy - 2 z fa, )
"\“'95‘—'0 y=0 y=0 =0
Y
Some other Qa‘ﬁzples are )
:\‘*‘ Plx+y=25)= Z flze, 5 — )

P :
Pa<2y=3) = f(xl%)

s

2

Iz, 3)

=0

f(ﬂs 3)

ﬂ[\/%

B3
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> Sy W)

Ple <2y >3y =700
DRI
gm0y =

Pl +y = 2[z? + y* < 5)
SO, 2) + 71, 1) 4 F(2. 00

TTO,0) F70, 13 F70, 2) + 705 0) £ 40, 1) + 0,2 ERUNEPA)

For three variables, the regions may be troublesome 1o v Nze, and
for more than three variables, we must rely on the ;111:1!3’1’»5\;-::-] tleserip-
tion of the region to determine the required sums. j{:ﬁﬁc relatively
easy examples are W

el
N

3 4 6, ™
Pa<8y<4,2<e<8) = 3 ¥ ¥y 2

=0 pAE =2

4
Platy=4lz=2) = Yfl, 4 — 2[2)
N
AN/ Bz 6-r—y
Pety+z<ty= ) ¥ ¥ flyz
08T 2S00 S
o 6 6
Patyte=06)= 3 3 f(z,4,6 -z — )
A~ T=0 =10

“34. The Binomiak;I}\istribution. The binomial distribution is prob-
ably the most fre?}ﬁ*eﬁtly used discrete distribution in applications of
the theory of s@aﬁ}stics_ It is the distribution associated with repeated
trials of thoygame event. Suppose we denote by p the probability of
suecess ofgbme event. The event may be the occurrence of o head’
whan %Ebl‘n 18 tossed, in which case p = 141 may be the oceurrcnce
of a géven when two dico are cast, in which case p = 14; it muy be the
Qp\.(?g?rence of at least two aces when five cards are drawn from an ordi-

~hary deck, in which case
3

43 £48 4\ 748 4% {48
- [(2) (3) + (3) (2) + (1) ( 1)]
p = k3T \2/
52
(%)
Or more generally, P may represent the probability of oceurrence of

some actual event to which no numerical a priori probability can be
assigned,

64
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Whatever the event, if the probability of its occurrence is p, the prob-
ability of its nonoceurrence is 1 — p, since we cannot suppose that the
event can both occur and not oceur in & given trial. It will be con-
venient to denote 1 — p by ¢, and in speaking of & given trial we shall
say the probability of & success is p and the probability of a failure is q.

ptg=1
Now suppose that n trials are made. We shall be concerned with the

number of successcs, #, that occur among the » trials. The variate x
has the density

N\

flz) = (n) gt 0<z<n ,"‘:.\(1)

\
T
since there are (’J orders in which z success and #n —~:B fa,ilures can

peour, while the probability for any partlcular orde“r}s peg™=.  This
distribution is the binomial distribution. It is a dlscrete digtribution
of onc random variable, z. INY

The function contains two other variables. j’x and n (g is not counted
because it is determined by p) of a diffcrent’ ¢Waracter. Their variation
ig betwecen different binomial dlstnbubmns for a gpecific binomial dis-
fribution,  and n must be given numerlcal values. Variables of this
kind are called paramefers. The functlon actually represents a fwo-
parameler family of d.lstnbutlons ‘and & spevific member of the family
is given when p and » are g’wen gpecific values. The parameter n is

called a dsscrete PATam e{é gince it can have only the izolated values
1, 2, 3, - 1 it woild be meaningless to spcak of, say, 2.53 trials.
But piga mntmw\)us ‘parameter, since it can (oncu\»ably have any
yalue in the range 610 to one.  Thus it is possible for p to be .5, say,
in the case ofgtrue ¢oin, or possibly 8000037 in the case of a shghtly
biaged com§ “Any arbitrarily chosen number between zero and one
ig an allowab]e value of p.

Tno*partlcular binomial distributions ale plotted in Fig. 8. In (a),
PE Mand n = 4;in (b), p = Bandn = 3, In general, the hinomial
density will haw a maximum value determlned ag follows: Let m
be the integral part of the number (# + 1)p and lct ¢ be the fractional
purt. Thugif n = 7 and p = .3, we have m = 2 and ¢ = .4, The
largest value of (=) occurs when  is put equal to m; m is called the
modal ralue or simply the mode of z, To prove that this value of »
docs maximize f{z), lot us assume for the moment that ¢ is not zero,
and let us form the ratio f(x + 1)/f(z). We wish to show that this
ratio is less than one when z is greater than or equal to m, and greater

b1
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than one when z is less than m.  We are thinking of 4 situation like
that illustrated in Fig. 9. Now

M+ _pu—

Cfe T g 1
Flx) F{x)
0.50
N
.wg\\.;
0.25 i ‘\"‘}
~\
0.25 »§ ‘
. &\/
.\’\,
N\
Y
LV
\\/
| is./’
0 I 2 3 4 W o | 2 3 X
1
(G’) “.:.‘,;‘ (b)
*C{‘ T §
-
£) R\
D
b\
:\)
N
A/
x p
x;\Qtl
P~
\/
O
\.5‘*
i&’\’%
N,/
Q | ] I I L
3} e mel oMol ee oo n-lo7 X
Freo g,

and if z is greater than or equal to m, then
pr—2z pn—m
gr-+1- gm—+41

On substituting (n + 1)p - ¢ for 7, the right-hand expression may be

written
o6
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PR —m _ n4+ 1) — [(1 ~e)fql
gm—+1 (m-+1)+[(1—e/p]

which is certainly less than one. If x is less than m — 1,

prn—z pr—{m—1
gz +1 q m
St Dgte
g+ 1lp—e
>n—]—1—|—e;’q \
n4+ 1 —efp

L\
and is therefore greater than one. We have omitted the case™\

L ¥
S

z=m—1 ON
here R4
Jflea+1) _pn— m 1
f@)y g m V)

D)+
IR Y

whieh is again greater than onc if e ia;n’@% zero. If ¢ = 0, the ratio ig
equal to one, and f{im) = f(m — 13 there are two largest values of
() which are equal and which-dgeur af z = m and at © = m — 1.
This situation is lustrated i \Fig, 8(e) where (n 4 1)p = 2 is an
exact integer, so that f(1) ::mEI‘ f(2) are two equal maximum values of
f@). )

Tor lurge values of & $he appearance of the binomial distribution is
generally like thathok Fig. 9. In Iig. 8(b) the mode iz at ¢ = » when
p = .8 and n =73 but as n increases, the mode moves away from the
extreme righ(@}ﬂ of the range; thus, if » = 100, we have

O

N 101 X .8 = 80.8
~O
80 \\Qa}t"t-he mode is 80 and is well away from the extreme value of
x = 100
The computation of binomial probabilities becomes troublesome
when = is large. Approximate metheds can be developed for comput-

il’lg ! pEgr Z but we Shall omit these because the com utation of
4 H b
x

single terms s rarely required. In most applications, partial sums are
needed. Thus we may require the probability that z be greater than
&7
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an integer g,

Plz > a) = _}: F1EY)
a4l
Methods of computing such sums will be given in Clhinp= 7 ond 11,
3.6. The Multinomial Distribution. e multionsie | distribution
8 associated with repeated trials of an evont whicl, ciun e morve than
two outdomes. Thus the outeome of tossing o dic nws e any one

of the six nurabers 1,2, » -+ 6. IFthe oyent rofors to 1 he sjrpufivance
of aces when, say, seven cards are drawn, there are five posibie oute
comes: 0, 1, 2, 3, or 4 aces, \ \)

In general, suppose there are & possible outeames of g &b nee event,
and let the probabilities of these outcomes be denota™e g, - o
pr. Obviously we must have o\'{,'

k \V

3 . = ].)
Py 1 \ (
i=1 ::\\“

4
W

Justasp 4+ ¢ = 11in the binomial case, s"S{Jppose tle event is repeated
n times, and let z1 be the number of titds the outcome awsociiiod with
P1 oceurs, let 3 be the numpber ofvtjﬁiés the ontecome associnied with py
oceurs, and so forth, The dezgsiftiv for the random variables Ty

P

T, Xy ds

Py .
n !
S gy OF 2 = " ] e @
‘\\ I z1i=1
WV i=1

O . _ . .
where the ran%"}af each x; is zero to n inclusive, subject to the restrie-
4

k€
. NG - . . . :
tion thats} o = n.  We have written the funetion as vue involving
et
only kj‘*‘? 1 of the z;'s since only & — 1 of them are funetionally inde-
\N" R

/o 3 . . %
lﬁ?ﬂenti i 18 exactly determined by the relation E a; = 7 when the
1

Ty ", Teea are S_pe(:iﬁed. Thus this is o multivariate distribution
}nvolvmg k — 1variates. The z, on the right-hand side of (2) is to be
Interpreted as merely a symbol for the expression
W— T — 15 — — Tr—y
The expres@on (2} is a E-paramecter family of distributions, the
parameters being n, pi, ps, - - - pi " The other variable p; is, like
68
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¢ in the binomial distribution, exactly determined by

Pr=1—pi—pr— " = Pr
A particular case of a multinomial distribution is obtained by putting,
eg,n =3k=23p=.2 p: = .3 toget

I
I, @) = ETZUE) —3.:5:1 — 22}l (:2)n(8)=(5)> ="

This function is plotted in Fig. 10,
ffxt-xz]
0.20

Ox'
! 2\ " |3

A\ X2

//\9/"‘/

X, P \ >
'\“' Tre. 10

1t may b&shon n by a direct generalization of the argument used in
the precedh’ig section that the maximum value of f(ey, 22, - -+ ; 1)
oceurd Wﬁen the x; are put equal to my, the integral parts of (n + )p.
6, "The Poisson Distribution. The Poisson density is reprosented

by the fanction’

f@) =" 2=01,23 )

which has an infinite range. Since the exponential e™ has the series
expansion
m*

m?
em=1+,m+ﬁ.+ P +E+--.
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83.6 DISCRETE DINTRIBUTIONS
it follows that

":1

2 f)y =1

z =1

The distribution has useful application in situations where o Iarge
number of objects are distributed over a large area. To consider a
concrete example, suppose a volume V of {luid contains a lurge nuniber
N of small organisms. It is assumed that the organisms have no =ocial
instincts, and that they are as likely to appear in any pari. of i}m\ﬂuid
48 i any other part with the same volume.  Now suppose asdvop of
volume D is to be examined under a microscope, what is thegirbhability
that z organisms will be found in the drop?  We assume . 1 s very
much larger than D. Since the organisms are assued to he dis-
tributed throughout the fluid with uniform probubiity, it follows that
the probability that any given one of them may(bedound in 1 is D/ V.
And since they are assumed to huve no social instfnct-s, the occurrence
of one in 1 has no effect on whether or notinother oecurs in . The
probability that ¢ of them occur in 1 iz fherefore

N\ /DY (AL DV =
G) 7)) @

We are also assuming here thal*the organisms are so small that the
question of crowding may.be negleeted; all ¥ oof them would oceupy
no appreciable part of fe volume 1. The Poisson density I3 an
approximation to t%o’\iaﬁove expression, which ig simply a binomial
density in which p\="0/V is very small.

The Poisson distribution is obtained by letting ¥ and N become
infinile in suc-h:a\ way that the density of organisms ¥/V = d remains
constant. Hewriting (2) in the form

NN %%("N —2) - N —x+1) (LQ) (1 B N}))*"—z

PN 21N v NV

F (DD ()-8

il

the limit a8 N becomes infinite is readily seen to be
e~ P [agye
Y
which is the same form as (1) if we put Dd = m. This derivation

shows that m is the average value of z, since D, the volume of the
60




OTHER DISCRETE DISTRIBUTIONS - 83.%

portion examined, multiplied by the over-all density d gives the aver-
age number expected in the volume D,

We have gone into some detail in discussing this distribution because
it is often erroneously applied to data which do not fulfill the assump-
tions required by the distribution. Thus it cannot be used, for exam-
ple, in studying the distribution of insect larvae over some large crop
aren, because insects Iay their eggs in clusters go that if one is found in
& given small area, others are likely to be found there also.

The Poisson density function is perhaps best thought of as an

approximation to the binomial density, (V) 27¢% =, when Np is ] arge

relative to p and N is large relative to Np. It is particulaglg etul

when N is unknown, O\
3.7. Other Discrete Distributions. The hypergeomeiric distribution
is R
0
of \r — \
fla) = g ~- N (1)
(m ! R&

Equation (3.3) gives a special exampley) Fquation (3.2) is an example
of a bivariate hypergeometrical ClleiI‘.IthlOﬂ.
The uniform distribution is &8~

@) = % =12, m @)

The casting of a die pmwdf g an example.
The negative bmommd distribution is

W (107

and Ef(:ﬁ} = 1 sinece

\\:" ui(.1:—1—?‘—1) . 1 1
x-2=(0 r—1 ? A—gy 7

An example is provided by lefting » be the probability of suceess and
g be the probability of failure of a given event. Let f(x) be the prob-
ability that exactly # 4 r trials will be required to produce r successes.
The last trial must be 2 success, and its probability is p. Among the

other z 4- 7 — 1 trials there must be » — 1 successes, and the prob-
81
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(:{:—I—?'—I) s
N

The product of these two probabilities gives the desired probability,
f(z), and is the same as (3).

ability of this is

3.8. Problems. Specify range of variates for every distribution, Do
not obtain numerical answers which require lengthy compitations.

1. Fivecards are dealt from an ordinary deck,  What is | L Nensity
funetion for the number of spades? A

2. Ten balls are tossed into four boxes so that cuch }\JL\H\h crpnally
likely to full in any box. What is the density for the twamiter ul balls
in the first box? N

3. A coin is tossed until a head appears. \Quit is the density for
the number of tosses? Q)

4. What is the density for the number\thu.t- appears when o die is
cast? £

6. Two dice are cast. What is the’}lensit-y of the sum of the two
numbers which appear?

6. Cards are drawn from anpterdinary deck without replicement
until 2 spade appears. What, isithe density for the number of draws?

7. Ten dice are cast. What iz the density of the number of ones
and twos? '

8. An urn containgvr black and n white balls. % balls are drawn
without replacemeffy, ™ What is the density of the number of white
balls?  Bpecify the range for the various relative sizes of m, n, and k.

9. Threc ¢@ins are tossed n times. IFind the joint density of =z,
the numbey.6f times no heads appear; ¥, the number of times onc head
appears;sud 2, the number of times two heads appear.

10. Awiachine makes nails with an average of I per cent defeetive.
Whatys the density of the number of defoctives in a sample of 50 nails?
(B An uyrn containg 10 white and 20 black bulls. Balls are drawn
\.gre by one, without replacement, until 5 white ones have appeared.
Find the density of the total number drawn.

12. Beven cards are drawn without replacement from an ordinary
deck. Find the joint density of the number of aces and the number
of kings,

13. Show that

£

2O

62



PROBLEMS §3.8

by equuting coeflicients of x° in
(1 + 2)x -+ 1) = (1 4 z)*H

Hence verify algebraically that the sum of the hypergeometric density
is one.

14 Use the result of Prob. 13 to find the marginal density of the
number of aces from the result of Prob. 12,

16. In & town with 5000 adults, a sample of 100 are asked their
optuion of a proposed munieipal project; 60 are found to favor it Aot
40 to oppese it.  1f in fact the adulis of the town were cqually, di\ldod
on the provosal, what would be the probability of obtammg & mag Ority
of 60 or more favoring it in 8 sample of 1007

16. A distributor of bean seeds defermines from e*«:temn e tests that
5 per cent of a large batch of seeds will not germn;;\e. He sells the
seeds in packages of 200 and guarantees 90 péx\gent germination.
What is the probabilify that a given package will Wiblate the guarantee?

17. A manufacturing process is intended $éProduce elcetrical fuses
with no more than I per cent defective. \N\[1)1s checked every hour by
trying 10 fuses selected at random from the hour's production. If one
or more of the 10 fails, the process ifthalted and curefully examined.
If in fact ifs probability of produamg a defective fuse iy .01, what is
the probability that the process. #ill needlessly be cxamined in a given
instance?

18. Referring to the abové probiern, how many {uses {instead of 10}
should be tested if thé\ma,nufacturer desires that the probahility be
about 0.05 that the/process will be examined when it is producing
10 per cent defectives?

19. A has tw »pennoies; B has one. They match penuies until one
of them haszalMthree. What is the density of the number of tirials
required tenend the game?

20. Ref,erlmg to the above problem, what is the density of the mam-
bepof ﬁnalq given that A wins?

‘e A dieis cast ten times.  What is the probability that the number
of ones and twos will not differ by more than two from its modal vaiue?

22. A Poisson distribution has a double modc at = = 1 and z = 2;
what is the probability that = will have one or the other of these twao
values?

23. Red-blood-cell deficiency may be determined by examining a
specimen of the blood under a microscope. Suppose a certain small
fixed volume contains on the average 20 red cells for normal persons.
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What is the probability that a specimen from a normel prersun will
contain less than 15 red cellg?

24, An insurance company finds that (0.005 per et of the popula-
tion dics from a certain kind of aceident ench year.  Whal is the prob-
ability that the company must pay off onmore than 3 of 10000 insured
risks against such aecidents in o given year?

2b. A telephone switehboard handles 600 calls on the aver e during
a rush hour.  The board can make a maximum of 20 conneeliong per
minute. Usc the Poisson distribution to cstimate ihe peoliability
that the board will be overtaxed during any given miuud SN

26. A dic is cast until a six appears.  What is the proftliiy that
it must be cast more than ten times? W M

27. Two dice are cast ten times. Lot z be the wiither of times no
ones appear, and let y be the number of tinies t\\'(qni’es uppear. What
1s the probability that 2 and ¥ will each be led han 37

28, In Prob. 27 what is the probability that + 3 will he 17 What
is the probability that z 4 y will be betpedn 2 and 4 inclusive?

29. A die is cast twenty times, \-\-"h:ﬁt;\is the probability {hat there
will be at least twice as many ones and twos as there are threes?

30. Ten cards are drawn wj thoutseplacement from an ordir i deck.
What is the probability that the number of spades will exceed the
number of clubs? "N

31. Buppose a neutron passing through plutonium is cqually likely
torelease 1,2, or 3 othertietitrons, and suppose thesc second-generation
neutrons are in turhfench cqually likely to release I, 2, or 3 third-
generation neutrohs. © What is the density of the number of third-
generation DebEons?

32 Usingkh“e' density of Prob. 12, find the conditional density of the
number of@ces, given the number y of kings.

33. EI{hg the density of Prob. 9, find the conditional density of z
and zgiven y.

§ ‘\ y L3 3 RN
~\Betermine the sums required to compute the following probabilitics

fing density functions with as many variates as needed.  Assume all
variates take the values: 0152 - -, m

4. P2z +y < 3) 3. Plx>y>2
35. P(z? 4+ 42 = 25) 39. Pl +y =5y =3)
36. P(x> < 5|1 < y < 6) 40. P(z + y = 5|z = 3)

8. Ple > 2y —a),0 <a <m 41, Pe<3,y<4,2>5w>6)
42.P(a5$$biy=z),0<a<b<m
43, Pz > 2ylz > 2)
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CHAPTER 4
DISTRIBUTIONS FOR CONTINUOUS VARIATES

4.1. Continuous Variates. A continuous variate is one that is not
restricted to have only isolated values; it may have any value in a
certain interval or collection of intervals. A

To consider an example, suppose & rifle is perfectly aimed at‘the
center of & square target and fired several times after being glambed
in that position. The bullets will O
not all strike the center, because
minor variations in the weight of the ,
bullets, shape of the bullets, in the IR et
offect of humidity and temperature ’

on the powder, and other factors, ‘,.\\ I
will cause variations in the trajec- N
tories of the bullets. After a few | (\® .

chots the appearance of the targety}
might be represented by Fig. BIL™
Let = random variable z be defincd Tia. 11.

ag the horizontal deviationsof  the

center of a hit from a vgrhi:cai line through the center of the target.
Clearly z may havea ‘%dluc in its possible range of variation.

The number of pbesible values of z is infinite. In fact, any finite
interval, howeven\’sin:ill, contains an infinite number of points. The
interval .001 t& 002, for example, contains among others the points
0011, .00114,07001111, 0011111, and so on, This fact raises some
difﬁculti@&béut defining the probability of z. In order to understand
the pl;ehlem, we must digress briefly to consider the number of points
in.afiinterval.

Phe number of positive integers is infinite; it is called a denumerable
infinity. The symbol 4o will be used to denote a denumerable infinity.
Any set of objects which can be put into one-to-one correspendence
with the positive integers will be said to contain A, objects. Thus
the set of even integers contains A, elements, for we can set up the
gorrespondence

2
1

0, - - -, 2n, *
3 S, v ym
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84.1 DISFRIBUTIONS FOR CONTINUOUS VA4t

The set of numbers D, 1, 1.5, 2 25 . - «oal=o hus A clementsy SiIlCB
L t : '
Wwe can set up th(} COI‘I‘QSpOIldCIICC

1234 ;

3 R
53“,:‘2',;)'»2-.),"',2,"'
- -
L2 3 105 A

?
The set of unrediced proper fractions is 11lso denumeratde, sinee we
may set up the correspondence

Llzlesiosy ;0 O

233 YL Uyy R Sl KON

L2,3,4,5,6,7,8 0,10, - -, ... O
where r is the largest integer for which r(r — 12 < (i?'":i:mi

P ?‘_{-}“_;__I} ,\\

Th e L N\

us for n = 9, we have r = 475 =3
This last example shows that the numl)’e} of rational numhbers (frac-

tions) on the interval zero to onc is at RdsL g denumerable s, Actu-

ally, in our sequence, every l'cdugea fraction is counted Ay times.

Thus 24, for example, appears afsj.}; )

g fl 6 “8’7:; 2n
e .
30 9\]2 3n

which ig obviousiy a'dé:nﬁmerable set. In the theory of sots, it is
shown that every in,ﬁu}i & subsct of 2 denumerable set s also denumer-
able. Thig theorenj"'together with our last example shows thal the
number of rat-igynél\boints on the interval zero to one js g denumerable
set. It can aldd' be shown that the number of rational points on the
whole & axisSe denumeruble,

The tp:t:a.l nunber of points on & finite interval, say the interval from
zore f6ene on the o axis, is called a conténuons tnfindty. This infinity
18\?é§y“much larger than a denumerable infinity and will be denoted by
ALY We shall not prove that 4, is larger than 4y, but it hecomes
reasonable when wo attempt to count the points on the unit interval.
Every point on the unit interval may be represented by an infinite
decimal. Thug the point 14 may he represented by

33333 - - .

and 14 may he represented hy

-2500000 - . - or hy -2495999 - . .
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CONTINUOTS VARIATES §4.1

Conversely every infinite decimal corresponds to a distinet peoint on
the unit interval. We can eount the number of possible decimal
cxpansions a8 follows: The first place can be filled in 10 ways, the
second in 10 ways, the third in 10 ways, and so forth. The first »
places can therefore be filled in 10" different ways. The number of
infinite decimal scquences is therefore 104, since there are 4, places in
the sequence.  When we compare 10% with 5, 1020 with 20, 10102 with
1000, it becomes reagonable to suppose that 1040 is of an entirely
different order from A,. This number, 104, is 4;.  Actually th

are more deeimal expansions than pomts, because of certain dupllca-
tions, as illustrated above for the point at 14, but these duplicatiéns are
denumerable and may be neglected relative to A, Any finit€'number
# raised to the power 44 can be shown to be equal to any.oiher raised

N

'Eflr;'z 12,

to that power. Sinece the n‘t{mbpr of points on the unit interval, A,,
gatigfies the relation ¢ \ WV
94 < A, < 104

it follows that 11.: 1040 gince 9% = 10%. The equality sign here is
used to mean am\{o one correspondence,
We can 7 show that the number of points on the whole 2 axis
ig Ay, ‘.\ (,\m::iy sct up a corregpondence by means of the function
NS 1 .
m\J = e T >
y = g ifzz0
1
b=

[

Hz<0Q

which is plotted in Fig. 12, Corresponding to every value of 3 there

is & unique value of y between zero and one, and conversely there is a

unigue value of x for every value of ¥ belween zero and one.  Thus we

have s one-to-one correspondence between the peints on the infinite

r axis and the unit interval on the # axis. The number of points on
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the z axis is therefore A1 It can also be shown it {he number of
peints in any finite interval, however lurge or small, i+ 1., The eor
respondence is sel up as in Fig. 13, Let 7 and J be anv 1wo intervals
of different lengths, and let P be the point. of inlersection of two Lnes
joining their end points as illustrated.  Any point & of 7 s made to
correspond to the point y of J which lies on the line joining x and P.
Thus any interval can be related to the unit inferval.

Even more bizarre resuits than these could be obtained Ly [nLrsuing
the theory of sets further.  Thus, for example, the nuniber gfpoints
in a finite or infinite planc is also A, But we have enongh rivilts for
our immediate purposes. The important iden is {1 \listinetion
between the two infinities- —denumerable and (-rmiimgnm:_ There are
a denumerable infinity of rational points in any i]l'i..t;il"'\}ﬁ]_‘ bt the total

R4

"N T, 13,

number of points is Amyand the number of rational points is entirely
negligible relative %o, the total number. We could remove all the
rational points and essentially the whole interval would atill remain.
We can now{distinguish precisely between diserete and c¢ontinuous
variates. &di’screte variate is one which can take on a finite number
of valueg'sf/a denumerable infinity of values. A continuous variate
is one ahith can take on a continuous infinity of values.
,4~'f2,;‘ Probability Functions for Continuous Variates. In Lhe case of
,.Q\l‘s;ﬁrete variates it is possible to have a finite probability assoeiated
\With each admissible point, even when the number of points is infinite,
and yet have the sum of the probabilities equal to one. Thus if z 18

the number of tosseg required to chtain a head with a coin, we have
seen that the density of z is

o) =36y 2=1,234 -..
and

Y fa) =1
=1
68



PROBABILITY FUNCTIONS FOR CONTINUOUS VARIATES . §4.2

In the case of a continuous variate this 1s not possible. No matter
how rapidly we try to make the probabilitics converge to zero, their
sum will nevertheless be infinite unless practically all the points (all
but & denumerable set) are given probability zero. Referring back
to the horizontal deviations of rifle shots on a target, it is clear that all
values of z within a small interval will he about equally likely, and it
cannot reasonably be assumed that most of these points have probabil-
ity zern while some few others have finite probabilities.

We have encountered a difficulty which, it is to be pointed out; ig\
purely logical. From a practical point of view the difficulty is obscured
by the fact that we could not actually distinguish between a dp,\{lﬁti\on
of .5 inch and one of 500008 inch. We are limited by the deduracy
of whatever measuring device we use, and a deviation cgn"f%e identi-
fied only within a certain interval. Thus if we can n@a&mre only to
within & hundredth of an inch, we might measure ® déviation to be
4,26 inches, - This would be interpreted to meanstbat the deviation
lice gomewhere in the interval 4.25 to 4.27 inche’sﬁhd might hetter be
written 4.26 + .01 to indicate this fact. \N

The logical problem is met by dealing{wath infervals rather than
individual points. T.et us first (:xamige’jsdine empirical probabilities
for intervals, Suppose the rifle is_fited 100 times at the target of
PFig. 11, and suppoze the target a;c'a,’i's divided into strips by drawing
vertical lines on it 1 inch aparte Letting the deviations = be negative
to the left of the central lingSsuppose the verfical lincs are drawn at
z= +1, £2 43 and Cor. Now for a given strip, gay the one
with 0 < x < 1, the nQmber of shots in that strip divided by 100 will
be the empirieal probability that a deviation will be between zero and
one, We may tab@lﬁte a hypothetical distribution of shots and com-
pute the empi;'iqé}probabilit-ies as in the accompanying table. The

N,

S
Strip Number of ghots | Empiriesl probability
O"\:.A.; )

\‘;" —5<uz< —4 1 .01
—4 <z < =3 1 : .01
—3 < —2 & 06
—2<z< -1 13 : 13
-1 <z=<0 24 .24
B<e <1 27 .27
1<z <2 16 ! 16
23 7 .07
3<r <4 3 .03
4 <2 <h 2 .02
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§4.2 DISTRIBUTIONS FOR CONTINUOUS VARIATES

empirical distribution represented by this table could be plotted by
using vertical lines as was done with discrete distributions. ITowever,
we ghall not plet a line at say the mid-point of each interval butl shall
prefer to use a rectangle with height equal to the probability divided
by the width of the interval, and with a width equal to the width of
the interval. This is donc to indicate that the probability refors to
the whele interval rather than to any single peoint in the intorval.
The result is shown in Fig, 14,

Referring to Fig. 14, we note that the area of one of the rectangles is
equal to the empirical probability for the interval correspondingto it,
since the height of the rectangle is cqual to the probabilityand the
base is one. W shall focus attention on the aress rather thun the
heights. The sum of the arcas of all the rectanglesiis onc. For

S
0.30 QO
D
020 O
»:’ B
LMoo
\Y _l__
| S — 28 3

-5 -4 -3 1\{\ - o | 2 3 4 5 X
. Fra. 14,

intervals othey than those chosen originally
pmbabili't,i\eﬁ\. ~ Thus we would estimate the pr(;
by adding’the arcas of the two reetangles o
43, "lxo estimate the probability that, sa

\?rc)\glﬂ compute the area over that interval t

we may also estimate
bability that 0 < z < 2
ver that interval to get
¥, —.25 < a < 1.5, we
o get

N/ 06 4 .27 + .08 = 41

If a second 100 shots were fire
another empirical distribution, whi
ent from the first though itg gener

d at the target, we could obtain
ch would in all likelihood be differ-

_ al appearance might be similar. In
constructing a theory of probability, we like to think of these empirical

pr(z{ba'bilit-ies as being P:st-ima-tes of gome “true” probability. To this
“hd we assume the existence of 5 curve f(z) such as that plotted in

Fig. 15, W ;
1g. 15, We may not be able to specify the funetion, but we assume
T0
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that there 1z zome funetion which will give the correct probability for
any interval.  The probabilities are given by areas under the curve,
not by valuex o the function  Thus

PO <z<1)= [ f@d -

and this iz the probahility that is estimated by the arca of the rectangle
over the interval 0 <z < 1in Fig, 14,

The funciton fir) is thought of as a smooth curve rather than a step
function for (he {ollowing reasons: In the first place it is reeognized.
that the chicdee of intervals in any actual experiment s purely arbitrari,
In the rifle cxpeviment we could just as well have used intervals 14 ineh
Fix) . O

N

Fug, 15.
long, or intervals with end'p?ﬁlts at 1.2, 2.2, 3.2, for example, or we
could have used intervals “Sidifferent lengths-—0 to .5, .5 to 1.5, 1.5 to
3, for example. So the:stcps of the empirical distribution have no
partieular significan®e™ In the second place, suppose we consider two
small intervals gt/ @civision point, say 1.9 <z < 2and 2 <u < 2.1.
Since the se(:.(;n@..ii;iz.ewl'\raml is farther removed from center than the first,
we should gg)}ct’; its probability to be somewhat smaller, but it is not
reasonahleso suppose a deviation is more than twice as likely to appear
m tﬁ‘ﬁ;mi interval. as js indicated in Fig. 14, The smooth curve
gives % more reasonable relation between the two probabilities. In
the third place, cxperiments with a large number of triuls usually indi-
tate that there are no abrupt changes in the distribution curve. Thus
if the rifle wore fired, say, 1000 times, and if intervals 1{o inch wide
Were Used, the steps would likely be much smaller than those of Fig. 14
and approxvimate g smooth curve. )

.In general, g probubility density function for a continuous variate
Will be & function J) defined over the range of the variate, and the
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range may be finite or infinite. It is often convenient to think of the
variate a8 always having an infinite range; when the range iz actually
finite, f(z) may be defined to be zero outside the range. The funclion
must be positive or zero, and the area under the curve must be one.
Symbolically, the requircments for a density function are

@ fz) > 0
®) [t =1

The probability that the variate z falls in any interval @ < z &5 is
given by the integral

Pa<e<b) = [*fwi R\

Since the area over a point is zero (a geometric line has\io area), it is
customary to define the probability that # has an ﬁ'art-icula.r value to
be zero. Wemay, in fact, argue that the probabiﬁg- is zero as follows;
To eompute the probability that = will be some number a, let us find
the probability for a small interval of widgh,2¢ about «:

N Fate
Po—e<z<a+ g)t#‘f;_t flz)dx

The‘integral is equal to 2¢f(a’) w.hé’re a’ is a properly chosen point in
the interval ¢ — ¢ to g + e. {Apoint o’ is determined by construct-

. a—tn,
ing a rectangle of ares f%c’?f(x)dx over the inferval. The top side

of the 1'ect'a,ng1e :will int€rsect the ecurve f{x) at one or morc points if
the eurve is contm@s,’as we suppose it is.  Any one of these points
may be chosen asg’ N\ g’ is obviously dependent on ¢ and will approach
@ as ¢ approaches.gero.) Now we shall let ¢ approach zero and define
"\1~~\13(x=a) =£i_)n;P(a—-c<x<a+c)

R

PR have defined an interval by the expression ¢ < & < b, but we
mgt;}ﬁld equally well have used g Sa<bora<ae<borag ,< r<b
N\ without changing the probability associated with_-the inte;«“al A
matter of one or two points does not change the probability f.ol" a
cox‘ltln'uous varate becanse the probability associated with n single
?rt::; tl};sez;ar?. rI? fact, a denulrzerable get of points could be omitted
o E-pcc 1% celi‘zia IWl_thouF affecting the probability ussociated with it.
unction 1o iﬂe% stltuatlons,_ We may be able to say what the exact
e ) ::,l 1ust as we did in dealing with a priori probabilities.

practical situations, f(x) will ordinarily be unknown.
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Any positive function over any arbitrarily chosen range may be
regarded us i density function for some hypothetical variate over that
range, provided the function is multiplicd by a constant which will
make the integral of the function over the range equal to one.  Thus,
3 4 2z, for example, may be made a density function over the range
2 <z <4 FHee
' f: 3 + 20)dr = 18

the following function is o density function: ~
fley = 0 z <2 A
A
= 13 4+ 22)  2<az<4 :“i\\“;\.
=0 >4 % N/
.
F(x) \V\
O
1.0

.50

0 ¢ }‘; P 3 | 4 SI_ x

”\,;‘.\"’ Fia. 16.
The funct@‘ié chviously positive or zero, and

:?; J@wle = f_z 0dr + j: s + 2x)dx + L“’ 0dx
QO 04140
=1
The probability that a variate having this density will fall in the
Mterval 2 < 2 < 3, for example, 18
3

PE <z <3)= [, Hs@ +2)de

= %

The funetion is plotted in Fig. 16.
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4.3, Multivariate Distributions. Going back to the riille experi-
ment, we may characterize each shot not only by its horizontal devia-
tion x but by ifs vertical deviation ¥ measured perpendicularty from a
horizontal Iine through the center of the target. Suppose n inrge
number of shots are fired, and supposc the target is divided into i-inch
syuarss by means of horizontal and vertical lines 1 inch apurt. We
could count the number of hits in each square and compute an erupir-
ical probability for each square. By plotting columns with heights
equal to the empirical probabilities over each square, we migh€ et a

v <O
'\

#7NG
S )

7

&

\<&
7>
A\ .

result Kke/that illustrated in 7
mapgs’%e probability that a sh

galimn is eonstructed,
C ) e; 1;’2&1]3]' naturally ldea}hze this situation by postulating the existence
1 ction f(x, ¥) W]Il'll’zth would plot as & smooth surface over the
T,y plane.  The probability that a shot falls in & given region is repre-

sented by the volume under the surface over that region, One
strated in‘ Fig. 18. The probability
ngular region 0<a<ae 0<y<h

Fre 17,

e, 1.7. The volume of & column esti-
ot will fall in the square over which the

johat % and y fall in the recta
illustrated in the figure is

P(0<x<a,0<y<b) = ﬁﬁff(:v, y)dy do Sy
T4
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As in the ease of one variable, we require

fle, ) 2 0 (2)
[_: f_: fla, Ndy de = 1 (3)
The funetion fio. yi s enlled the joint densidy function for @ and y.
f‘('\‘Jy)
O\
Oy
;',\.\ o
D
¥

%
N\
'C’\FIG' 18.

As an iHlustration, theMunction 6 —  — ¢ is positive over the
rectangle 0 < ¢ < 2, 2\ y < 4, for example; hence it may be used
to define  joint dL—‘.IflSif?Y: function over that region. Since
i) ‘\w

O e - e —ypaydz =8
0\ a /2
T l\ .
The fOHOjffg"g ig a density function:
Ofte ) = 56—z =) 0<z<22<y<4 @
g =0 otherwise
o and y are rancdom variables having this density, the }:!mba.hility
that they will fall in the regionz < 1, <3, for example, 18

Pla<ly<3) = f_lm f_gmf(x, y)dy dx
= [ 56— o —ydyde

= 38
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§4.4 DISTRIBUTIONS FOR CONTINUOUS VARIATES

The probability that = + ¢ will be less than three is

1 f3—z
Pe+y<3) = ['["7716 — 2 ~ ydy do
= %4
The probability that z < 1 when it is known that y < 8 is

Pz <ly<8 =L&<ly<3)

Py < 3) ~
We have already computed the numerator of this expression, and the
denominator is \ \)
213 ¢
Pl <8) = [([7366 ~ 2 —yayds |
= /8 & '\.o ‘
hence o\
3¢ _8\Y
Pl <1y <3) =43 =2
Pt
The extension of these ideas to the cas} of more than two variales
is apparent. In general, any function f(z,, 25, - -+, ) may be

regarded as a density function of Iatandom variables, provided that

3

Fas, 208t - ) > 0 (3)
N R I % R S

The probability thag "ggnt- (21, T, = +
of the A-dimensi onal space is cbtained by
tion over that regicn.

The functign’

» 2} falls in any given region
integrating the density func-

."\:::}(331, L2, Ty, $4) = 16&:1132:1:3:34 0 < < 1 (G)

o\\“ =0

is adensity function since it satisfics the

<p;-0bability that a point falls in the

) 2

2 S8

otherwise

two requircments. The
reglon ¥y < 24, @y > 14 is

=f=f=° f= 4
Play <14, 20 > 14) = f% f_w fw f_mf(:cl, T, &3, Ta)day dig day dits

_ [l g1y
= f%ﬁ]j;j;] 18z woryr, da, diy dry dixy
4.4, Cumulative Distr_ibu_tigns‘,_

- Since in the cage of continucus
variates the probabilitieg &re given by integrals{, it is often convenient
%



CUMULATIVE DISTRIBGTIONS §4.4

to deal with ithe integrals of the densities rather than the densities
themselves. Leb f(2) be a density function for one variate (such as is
plotted in Fig. 15, for example) and let

Fix) = f..: Fde )

This function #{x) 15 the probability thut the value of an vbservation
will be less than 2. Thus

Fla) = Pz < a) I (21,

Fiz) is ealled the cnmulative distribution function of z, or simpjg“{he
cumulative disiribution. "The graph of a cumulative distribution
N/

AN
?
A

£

1of——— ) -

A
" i:}\ Fig, 19,

function is illustrated i WFig. 19, Any funetion F{x) may be regarded
88 the eumulative distathution of a random variable, provided that

\’}:’(1) is a nondecreaging function (3)

) .%w F—w) =0 (4)

R\ 5)
A\ Flew) =1 (

O |
al.ld\g{i}en the eumulative distribution, one can find the density by
dll’ferentiating it

_ dF(z}) 6)

The probability that « falls in an interval @ < z < s, in terms of the
“mulative distribution,

Pla < z < b) = Pl <b) — Plz < a)
= F(b) — F(a) )
7
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Referring to the example at the end of Sec. 2, where
flzy = WaB + 22) 2 <x<4

=0 otherwise
we find
Fz) = 0 z <2
= [ Us(3 + 2o = Ha? + 30— 10) 2 << 4
5
=1
Fx)
10
0 NS M ) 5 x

3% Fra. 20,
and the probability is, {\

& \J
PPz < 3) = F(3) — F(2)
O = s +9-10) -0
P \, = 44
N .
The fungtién is plotted in Fig. 20.
For{g €ral variates the cumaulative digtributic
BlgiVes, -« -, )
\"‘}.y _ f_“’lw f_:: P f_‘r: f(gl, zz’ .. s tk)dtk dtk—-l P dfl (8)
where f(z,, 2o, -+ - -

tve distribution at
probability

1 iz deflined similarly:
T

, Th) s th(.:’faensity. The value of the eumula-
the point (a,, g2 ", @), for example, is the
Hh<%%<%":%<M=F@&%“‘mQ @

Any fun(':tion Flay, g, - 0 4y may be regarded as a cumulative
distribution of % vartates, provided that
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CUMULATIVE DISTRIBUTIONS 4.4

F{xs, ws, + - -, 23) is nondecreasing in every variate (10}
Fle, », -y w) =1 (11)
Flag, « -, —®, -z =0 (12}

and this lagt condition 1s intended to indicate that F vanishes if any
one of the varinte: approaches minus infinity.  Given the cumulative
distribution /. the density may be found by differentiating F with
respect to eacl of s variates:

g 2 J "
Ty, e - Fy = — — - - — F SRR 13)N
f(Tls s : }-> f).’Cl 6.’1}'2 (9:6;: (xlr Ty, ’ k) (~3)
)
:,.\\ o
« \J/
3 4 9 LN
\:“>\
{04) 24
:0\\.1
‘..:\"
2 5 R > 8
NV
(02) % (22)
N
O
N \ 6 7
2
\Y Fie. 21

’\\..l
To illustmi:é 4 eumulative distribution for two variates, we may use
the de@t@' given in equation (3.4):

\‘f(x: y) =146 —z — ¢) 0<z<22<y<4 (14}
=1 otherwise

_ThGI‘e are nine regions in the z, ¥ plane to be taken account of in defin-
8 Pz, y); the nine regions are indicated in Fig. 21, in which the
toordinates of the points of intersection of the lines are given, (The
left verticai line coincides with the y axis) This eomplication arises
Peeause of the piccewise definition of f(z, y). We could simply state
' 79



§4.4 DISTRIBUTIONS FOR CONTINUOUS VARIATES
that
F(z, y) = f_: f_”w (s, O)di ds (15)

but 2 more detailed characterization of the function will be required
if it 18 to be useful. Inregion 1 of Fig. 21 f(x, ¥) is zero; hence

Flz,s) =0 <0,y <2

In region 2, although y is greater than two, we have z < 0, so that\(15)
is still zero since f(s, £) never becomes positive over the range OiMnte-
gration. The same is true in regions 3, 6, 7. For x, ¥ in region 5, the
integrand is not zero when 0 < s < 7,2 <t < y, and w& hive

3
&\

Fle, ) = [[7366 — s — atds

%4

AN
T P X )
- [te-9w-2 ~La2)a
o 2 N,
= Hex(y — 2)(10 — y — x) ,Q\’<\x <2,2<y<4 (16)

For any point in region 4, the in‘g-e'g;naﬁd in (15) is positive when
0 <s <2 2<i<4; hence R

Fa, ) 2 ff [ 15, yat ds
and this integral may bf\fzﬁmputed by putting ¥ = 4 in (16) to get
Fz, y)\%i%x(ﬁ -z} 0<z<2y>4
Stmilarly, in re%iéfl.‘S, Fz,y) = F(2, y) when & > 2, so that
P =K ~26 —5) 2> 22<y<s
and ifi\@iﬁn 9, Flz, y) = 1. Combining these resulis,

:(.-'1\‘3:3!3:0 z<Dory <2
\”\:w =%6$(ff;—'2)(10-y-—x) 0<a:<2,2<y<4
:}éx(6~:c) D<z<2y>4 (a7
=%y -8 -y t>2,2<y<4
=1 - T>2 >4

The function is plotted in Tig. 22,
alzhi: D<r0;3 at;hg thitba point (r, ) will fall in any rectangle, say
. . 1 2 ¥ , I Tt H . -
distribution as follows: % May be written in terms of the eumulative

80



CUMULATIVE DISTRIBUTIONS §4.4

Ploa < < by, <y <by) =Plo<b,y<b)—Plz<ayy<bs)
— Plr < b,y < as)
+ Pz <ay,y<a)
= F(h, ) — Fa., by) — F(by, as)
+ F(L’Lh El-z) (18)
Thus, in the above example,

Il

F{1,4) — F(0, 4) — F(4, 8) 4 F(0, 3)
B — 0~ 3 +0

PO<a < 1,3 <y <4

- 4 Q
Y, 7/ yad ya 1; \“.\
" AT
5 /// \&1'
WA v
4/ £t / X
A A A a7 .
[ oo
| A AN
I.O/ /// .’:":"
e ’v
e RN

7 1 H 3 A ~ & 6 7 8 x
i«..>l<"lt:_ 22.

These distributions egn*hecome quite complex for several variables,
and in fact many impoptant problems in applied statistics remain
umsolved merely bondGée the integrations required for their solution
are too Complexxj&r"perform. Modern developments in high-speed
“omputing mau\hj}fés promise to remedy this situation within the next
€W years. {\

o ’t-his"bfqék we shall ordinarily use small letters to denote probabil-
ity de’mslt} funetions and the corresponding capital letters to represent
heir mulative forms.  Thus,

| G = [°, oo
or if the variate is diserete,
G(x) = E g{t)

E?.e Wo.rd density will refer specifically to g{z), while the phI‘E_iS% oumti-
e distribution will refer specifically to G(z). The word distribution
' 81



84.5 DISTRIBUTIONS FOR CONTINUGOUS VARIATES

will be used as & more general term and may refer to cither the density
or its cumnlative form.,

“’ﬁ,ﬁ_.___Marginal Distributions. Associated with any distribution of
more than one variabie are several marginal distributions. Lot FIE)]
be a density for two continuous variates.  We may be interested in
cnly one of the variates, say x. We therefore seck a funclion of z
which when integrated over an interval, say ¢ < z < b, will giv o the
probability that & will lie in that interval, In the z, ¥ plune E,'Ech an

y A ¢
7\ AN
N\S

"3

2\ Fie, 23,
iI’ItEI'Va.l corresponds to a@trip as illustrated in Fig. 23.  The specifica-
tiona <z < bis sa’gigf}}d by any point in the strip; hence

N\
P(a\< z<b) = [’ S 1, vy ae (0

Whatever ’ghei @%aiﬁcation on x, the limits of integration for Yyare — =
to + w©, gsg.)ve may define a function, say

Q h@ = [ s, pay @)

~ 408 this funetion is the required

) 3

marginal density, since
]
Pla<s<p) = f Fiz)dz 3)

for any pair of values q and b, Similarly the marginal density of y is
B = [* ja, pax ®

any density f(z, “y "t , 2y, one may find the

Ay subset of the variates by integrating the fune-
82

In general, given
marginal density of



CONDITIONAL DISTRIBUTIONS 84.6

tion with riwpect Lo all the other variates between the limits — « znd

+eo. Thus the marginal density of @), z,, and x4, for example, is
flz-;(il’?l, Lol
= e mandnds - - dn )
Referriiiy ' the distribution defined in equation (3.4, the marginal
density o o ix
D) = [ S )y Ce <z < Q
4 1 7¢p o'\:\.
=L/3(6—x—-y)dy 0<z<2 K\
= 14(3 — z) 0<2<2 N\
=0 T < 0or x¢\>{,2 (6)

The cumulstive marginal distribution is easily fodnd i the cumula-
tive distribution is given. For two variables, thesumulative marginal
distribution of « is N\

By = [7 [ S vy $ST[7 e @

= F(.’IJ, GO) t}: o
Thus we need only let the varialile in which we are not interested
become infinite in the joint cumitdative distribution, And in general,
KBy, g, - - , X8 a k-}{a‘s}ate cumulative distribution, the cumu-
lative murginal distributi%}Q\Sf &y, 2, T4, for example, is

Fray (971, Q.Qi‘gé.f)" — F(xl’ Ty, O, 2y, 0, * oo) (8)
A\
In our specific example we may find the cumulative marginal distribu-

tion of z by i%égfating JSi{z); thus
O\ .
W Bl = [7 pa

\”\} =0 <0
= Kz(6 — z) 0 <2 (9)

'Ith 8ame result is obtained by letting y become infinite in F(z, y)
&ven by equations (4.17). .
4.8, Conditional Distributions. We shall consider first a bivariate
df_&nsity; say f(z, y), which might be represented by the sur]:'ace of
12. 18, for example. Suppose a point (z, ¥) is drawn (a shot is fired
83



84.6 DISTRIEUTIONS FOR CONTINUOUS VARIATES

at a targef, for example), and suppose the second variate ¥ is observed
but nof the first. We seek a function, say f(zly), which will give the
density of z when y is known; i.e., a function such that

Pla<a <bly = [ felpis (1)

for any arbitrarily chosen a and 5.

If we change the above problem so that it concerns probabilitics
rather than distributions of continuous varlates, we may usethe
definition of eonditional probability given in See. 2.7. Thus wa may
compute (assuming ¢ > 0) O\

b fyte N\ ©
L +fy T, v
e e N 3

e fz{i(s, tyds dt

The denominator may be written in terms of thb 'ﬁw.a,rginal density of
Y, say f2(y)r an '\\.:

OO

and this is equal 'r,_o 2cfs(y'}, whq@@’ Is some value in the interval
¥ —ctoy + ¢ Similarly the nmimerator of (2) is equal to

Pla<s<lly—ec<t<y+e) =

2 [ (s, y)ds

where ¥ is some p%ﬁ\éfn the interval ¥ — ¢ to ¥ + ¢. Hence the
probability is N
< Js, y")ds
P(a:<~\x<b|y—~c<t< =da
S yhe =L T 3
e A 5 @
;\'oxv xya@%ﬂl let ¢ approach zero, Since ¥, ¥, and ¢t are all in the
mtcrv.:gi ¥ — ctoy + ¢ and must remain in the interval however small

¢ hesdmes, it follows that they must all approach y. Hence the limit
\ofz(g) 88 ¢ becomes zero is

P(a < < b[y) = L_f(s, y)ds (4)

L)

Since this relation holds true for any ¢ and b, it follows that

2l = 5 1)
Jely) SA0R (5)
84
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By similar reasoning, if fi{a) 15 the marginal density of z, the condi-
tional densily of ¥ given @ is
o )

Sy = 17 (6)

The funetion f(ziy) s« function of one variate ¥;y is gimply a param-

eter and will huve some numerical value in any specific conditional

density. Thus fay) is to be regarded as a constant. The joint

density f(z, ! ploix as o sarface over the z,y plane. A plane perpen-

dieular to the o« 4 plane which interseets the x, ¥ plane on the line
y = ¢ will inter-eet the =urfaee in the curve f(z, ¢). The area unders
this eurve 1s \
- KO\

f__ ACY eyle = fale) o\

hence if we divide (2, ) by fa(e), we obtain a density fungtio;}:which is
precisely f{x|r}. '\\:'
For the purivnlir funtion QO

fla, o — 1386 —a — 1) 0<z < 2\\2"< y <4

=10 vtheryige™
we have found in the preceding section thab the marginal density of @
is o\
Nl = 143 — :t;)}fs Dcar<2
=0 3% otherwise

In view of (6) the conditional density of y for fixed z is therefore
L 3

3 ‘6 — 0 -y
A =\— —_ 2<? <4
f(.f|“:).‘ 53 — %) o
i Conditional disiftions are defined analogously for multivariate
t;lﬁtl‘lbutlons, FIE for five variates with a density f{zy, 22, 5 Ty xﬁ?:
eGODC]JtiOl;P{{‘a{‘.HHit}’ of 2y, xs, 74, given specific values of 23 and x5, 19

N e e e e} = f(_x_lj 1‘2&3: X1 x-”)
e N f[\t Iy Fey Fupdy, ﬂ.-;,} fﬁb(ma’—“—"‘_‘xs)

o
s

~O
Wh% Faa(xs, 250 represents the marginal density of z3 and .
injj.r IndePEI}cllence. If the conditional dcnsi.ty f(zly) does not
o “f}y and'lt _t' e range of the conditional dcnISTty does not depen
th&if}thj'l‘ﬂ? £ g independent of  in the probability sense. Suppose
See. g I8 is the case and that we represent f(zly) by glx). Sinec, from
T
ey ey L
flay) = o) = 58 oW
856



§4.8 DISTRIBUTIONS FOR CONTINUOUS VARIATES

it follows that
I, 9y = g(x)fuly) 2)

hence the joint density of z and ¥ is the product of two functions, one
involving # only and the other mvolving y only. If we Integraic (2}
with respect to  over the whole range of y, we find that g(z) is simply
the marginal density of z. Thus we may state:

If two variates x and y are independent in the probability sense, then

their joint distribution, is equal to the product of their marginal de‘sz;"{fbw
tions,
The converse of this statement is also true. That is, if f (z, Phcun be
factored into two functions, one mvolving z only snd the otltertnyoly-
ing y only, and if the ranges of z and ¥ do not depend on gach oiher,
then z and y are independent in the probability senged ™

In general, if the eonditional distribution of g subset of any st of
variates is independent of the remaining fixed variables, then that sub-
set is said to be independent of the remaining variables in the prob-

ability sense. The function defined in edyation (3.6) provides an
illustration: o)

X 3
S

f(xl, Lz, XT3, xé) = 16x1x23:3$,4;. ) "'0 < < 1 for all ¢
=0 N otherwise
The marginal density of, say, xzf's;,ild x1 i

Fas(ms, 1) ___j;\au f_ o S0 T2, 24, 2)d, dig
‘%\4@2&?4 0<$2<1,0<$4<1
= 0 otherwize
Hence the cogdj:ti‘onal density of 2, and 25 18

§%:xa[$2, T4) = A1z, 0<a < Lo<as <1
A =0 otherwise

2 S

Thigfithetion and its range do not involye Z2 and 2, 50 that the pair of

Kalri,a:bles (21, z3) 1g independent of th Pair (s, 24) in the probability
Selise. In fact, all foup variates of thig distribution are mutually
independent as may be deduced from the fact that the funection masf

4.8. Problemsg

1. Iff(x)=2scwhen0<:c<la i
R nd zero otherwise, find the nrob-
ability that (2) 5 < 14, MU <2< () 3 given z > lp/g.
8g



PROBLEMS 84.8

9. Define o density function using the function (2 — ) over the
range 0 < » <0 2. Dlind the probability that & < o < bif

O<a<b<2

fa<0<2 i

3. If f{x) = 3¢ when 0 <2 <L and zero otherwise, find the
number @ such that e i equally likely to be greater than or less than a.
Find the numbcr & such that the probuability that z will exceed b is
equal to .05. )

4. A varinte o has the density f(z) = 2/2 when 0 <2z < 2 and >
sero otherwise., I 1wo values of # are drawn, what is the probability
that both wili fie greater than one?  If three arc drawn, whabis the

probability thi! caaeily two will be greater than one?

B. A varizite . haz the dengity f(z) = 1 when O < x"ﬁ 1%and zero
otherwise. Deicrmine the number a such that the probability will be
9 that at leasi one of four values of z drawn at rdndem will exceed a.

8. Suppose (e lite in hours of a certain kindef' radio tube has the
density f(zi = 100.0* when o > 100 and zerb when z < 100. What
I8 the probabilit v that none of three suchNpubes in a given radio set
f‘fﬂl have to he repliced during the first 360 hours of operation?  What
is the probability that all three of ghe'original tubes will have been
replaced during the first 150 hou;s:?i:'

7. A machine makes bolts with Giameters distributed by the density
f@) = K@z — 2403 — .2[5‘}‘:\‘“'}1&11 24 « z < .26 and zero other-

wise, K is the number ﬁ@éh makes f: f(zx)dz = 1. Bolts must be

Serapped if their diapgters deviate from .25 by more than .008. What
Proportion of the BT may be expected to be serap?

8. A bombig@iplane carrying three bombs flies directly above a

. R/
rft_ﬂmad trach\JIf & bomb falls within 40 feet of the track, the track
will be suffibiently damaged to disrupt traffic.  With a certain bomb-

Sight thedensity of points of impact of a bomb is

Y flz) = (100 4+ £)/10,000 —~100 <z <0
= (100 — 2)/10,000 0 <z < 100
=0 clsewhere

fr;eir?sentjs the vertical deviation from the aiming pt?int, which is the
thact in this case.  Tf all threc hombs are used, what is the probability
the frack will he damaged?
of 5. Referring to the above problem, the plane can catry eight bombs
& smaller size, hut one of these must hit within 15 feet of the track
87



§4.8 DISTRIBUTIONS FOR CONTINTOUS VARIATHS

to damage it. Should the lighter or heavier bombs be uscd on thig
migsion ?

10. A country filling station is supplied with gasoline once a week.
If its weekly volume  of sales in thousands of gallons is distributed by
J@) =51 — )t 0 <z < 1, what must be the capacity of ils tank in
order that the probability that its supply will be exhausted in a given
week shall be .017

11. A batch of small-cajiber ammunition is accepted as satisfactory
if none of a sample of five shots falls more than 2 foet from thé Center
of a target at a given range. If r, the distance from the tarket conter
of & given impact point, actually has the density N

"\
Zre— .‘:.‘;' '
O=t—m
~\
0 <r <3, for a given bateh, what is the probakbility that the bateh
will be acceptod ? )

12. X f(z, ) = 1 when 0 < 3 <10 <:3,\f\< 1, and zcro otherwise,
find the probability that (@) = < Lo (X i ety < 1; {e)w +
y> L e >2y; (o) x> 15; (f) s gy < Q=g x> 4
giveny < 14; (5) & > y given ¥ 2N

13, If f(x, 3) = e—tetn when 2> 0, y > 0, and zero otherwise, find
Pa>1);Pla<a+4qy < O < g < b; Plx < ylz < 2).

14. Using the distribution of Prob. I3, find the number a such that
Pety<a)=1 &

_ 15, If three poinf‘gl m,’y) are drawn at random where & and y are
distributed by thasfutiction given in Prob, 13, what is the probuability
that at least ongmfthem will fallin the square 0 <z < 1,0 « y o< 1?

makes bqs}\lin 8 with inside diameters Y. Suppose the density of

ar}d visyle y) = 2500, .49 < » « B1, 8l <y < 53 and zero other-

wise, :,jA bushing fits a shaft satisfactorily if itg d,iameter exceeds

t.h:aQ: of t-he. slhaft- by at least .004 byt not ;::101"0 than .036. What is
\"L‘}%&p[‘o}:}&blhty that a bushing and shaf chosen at random will £it?

.17' ‘Fmd. and lplol; roughly the cumulative distribution for the dis-

;El{;éu? xglzeg;(%ll rob. 6. TUse the cumulati?e distribution to find

. i8. .Fin(i. and plot roughly the cumulative distribution for the func-
tion gtven in Prob, 13, and yge it tofind P(1 <z <2 3 <y < 4)

19, I?‘md tho. marginal density of 2 for the distribut-:{o:n of I’rob i33

{a) by 11.1teg1‘at1ng out y; (b} by using the result of Prab .]8 to etT the

eumulative marginal distribution, then djﬁerentiating tl'le rusul%
88
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90. Find the conditional density of & given y for the distribution of
Prob. 13. What 1+ the (0 <z < Iy = 2)?

91, If f{x, 41 = (n — Ljln — 25/t + 2 4+ y)y* when a2 >0, y > 0,
and zero olzewiwere, tind Fle, gh, file), Fu@), fiyle).

22, If flo, wo = 2gil — & yh over the triangle bounded by the
axes and the Tine o = 5 = 1, find fla'y).

93, Tf flo, y} —3r, U<y <a, 0 <z <], find the econditional
density of .

4. Tf f(r'y: == 308y 0 < @ <y, und fo(y) = 5y, 0 <y <1, find

95. If fir, i, o — Rayz, 0 <2 <1, 0 <y <1, 0 <z <], fud
Plz <y < 2. )
96. It /(-3 — L'(1 -F )%, = > 0, {ind the density of = gf{yen that
T > 1. A
8. If fla, w) — I, 0 < x <1, 0 <y<1, find, the conditional
density of 2wl 4 eiven that y < x*, n > O O

28. If fla) — 1, 0 =7 & < 1. find the density oky =3z + 1. (Find
frst the cumulative distribution of y and lh(;n’,\)ﬁ'ffel‘entiate it.)

290 T fiwy = 200 > 0, find the den,sifxy\'of ¥ = T

30. K flm, ) = 1, O <z <1, 0<@¥ 1, find the density of
i=1r 4ty "»,;

8L If f(z, y) = oot 2 > 0, ;/.;;; 0, find the density of

.

~

- “:z =
\'\s..'
2.1 flz, y) = Dhye-=ww x>0, y >0, find the density of
33, If f{z, ;U)x{»l‘.ry, el 0<y <1, find the joint density of
U= 32, P o= y'g\l
8. If f(’ﬁ}@) =3z, 0 <y<u 0<z<1 find the density of
P
35\ITf($) = (14 x)/2, —1 <z <1, find the density of ¥ = 2%
BEIF fle, ) = |, 0 <2 <), 0 <y <1, find the density of 2
deﬁnedby:z =g t+yilaty<l,andz=2a+¥y— 1ifzx+y> L
ST 1f f(z, ) = %+, 2 > 0, y > 0, find the joint density of
“=z+yands — . What is the marginal density of v7
. 3.8‘ ey, 2) = et g 0,y > 0,220, find the density of
theiy average u = (r 4 5 + 2)/3.
%. .Iff(“’: y) = 4z(1 — 7, 0<a< 1,0 <y <], find the density
of ¢ given that y < 14. o

z + )
2
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§4.8 DISTRIBUTIONS FOR CONTINUOQUS VARIATES

40. If z is distributed by f(z), z > 0, find the density of y = qz? + b,
a >0

41, If  is distributed by J®@), —© <z < «, and if y = ylx) is
any increasing function of z [ie., y(z1) > y(x,) when 2, > &g], ind the
density of y.

42. Tt f(z, y) = g()g(y), 2 > 0, y > 0, find Pz >y,

43. If flx, », 2) = 9xlg(yigle), = > 0, y > 0, 2 > 0, whut ig the
probability that the coordinates of g randomly drawn point (z, y, 2)
will not satisfy either z > y>rore <y <oz O\

44. Tn which of the distributions defined in Probs, 21, 22, 23, 214,81,
32, 33, and 34 are the variates independent in the probability {:Q'}Lse?

O

\/
RS
AN\
L)
‘\ '3
®
“‘:\::&
&Y
R N
N\
™ v
\
- )
L] \
L))
Py
'.x.\./’
O
$
£\V
’Y../
O



CHAPTER 5
FXPECTED VALUES AND MOMENTS

B.1. Expected Values. The expected value of a random variable

or any function of » random variable is obtained by finding the aver-
age value of {he Nimetion over all possible values of the variable. T
consider a specific example:  Tf three coins are tossed, the distributien
of the number of heads that appear is the binomial (\N
7NN ¢
L SANARY A\
f':..i'] = " :2 T = 0! 1! 2? 3 ..’\ 3 (1)
; D

For & specific valuc of &, say z = 2, we think of f(2) = 3¢ as the rela-
tive frequency with which two heads will appeax 1o’ a large number of
trals. Thus in 1000 trisls we expect no . %ds to appear in about
1000 X 14 = 125 1riuls, one head to appe;s.r'fri 1000 X 3¢ = 375 trials,
t%o heads in 375 trials, and threc heads“in 125 trials. Now let us
find the avernge number of heads in (e 1000 trials, The total number
of heads is cxpeeted to be SON°

~ ¢

125 % 0 + 375 X 875 % 2 4 125 X 3 = 1500

. ¢ %
 the 1000 trinly; thus i}'ﬁé’avcr&ge is expected to be 1.5 heads per
trial.  This is the copeeted value, or mean value, of 2. It is clear thab
thefame result wodld have been obtained had we merely multiplied
a-I-I._?(_’S%ibIO mlg{‘\é“(‘)f z by their probabilities and added the results;

t.}_l}l_s’ -~

‘~.~‘@\5<l-§+1><§-»g+2><%+3><%=1.5

:[jh‘eﬁsgpécted value is a theoretical or idesl average. We do not actu-
i‘o e¥pect z to take on its expected value in a given trial; in fact t’hat
l‘ea‘; d be impossible in the present example. However, we Imght
o be Onably expect the average value of z in a great pumber of trials
) 38 Bomeswhere near the expected value of .
of g ;ls & considerations lead us to define in general. t]:u? exl?ected value
Serete variate as Zaf(z), where f (z) is the distrzbubion of' z and.
Oedsum is taken over the whole range of z. The symbol 2 (x) is used
tnote the expected value of x. Thus in the iltustrative exampis
91



§5.1 EXPECTED VALUES AND MOMENTS

3

Eix) = E rf(x) = 1.5

z=0

In general, we shall define the expected value of any function of z, say
h{x), as

Elh(z)] = 3 h(a)f(z) (2)
Where the sum is taken over the whole range of . Thus if
' '
hle) = 22 4 1
and f(z) is as defined in equation (1), \ \J)
3 g’ N
B+ 1) = Y @+ Dfw)
=1} O
= 32X 5645 X 56 + 100G — 4
Similarly for several diserete variates ¥y, Tz, t S, with distribution
J@y, 2+ - - ), the expected value of anydi@etion 4 of the variates
. FAN
i8 defined to be O
Blh(xy 2z, » - - | 2] . Ky
= EE T Eh(xl’ xz":: v !xk}f(:'cl; Ty * v 0 rxk) (3)

where the sums are taken over [Me entire range of each variate.
For continuous variates we\define expected values in terms of inte-

grals rather than sums, & % has the distribution f(x) and h(z) is any
function of &, then

OB ~ [ @ @

This deﬁnition:is;sﬁggested by the definition for diserete variates given
in equatio%@}tbgether with the definition of g definite integral as the
lmit of alSim. Let the z axis be divided into intervals of length
Ar (&30, +1, +2 -+ 3 and et x; be a point in the interval Az
such:f?ha.t F@DAz; equals the ares under f(z) over Az, Then an
expeeted value of A(x) ma
variate which can take on only the valiues
Fadax,  This expected value is

3 M) o

im — n
according to equation (2).

The limit of this sum ag all Az,
zero will essentially

remove the restriction that z be discret;
92
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MOMENTS §52

limit 58 the inicprul given in (4). Similarly for several continuous
variates, we define

EU?»(TI, Ko, 7. JJ|

= f_:f__w,: L f_mw ey, o, - - i@y, Ty 0 0, 20T
- dxi (5)

We shall avoil ronfusing the expected-value notation with the fune-
topal notation by never using the letter E to represent a function.
E(g) will alwiy= represent the expeeted value of g, never a funetio
Eof g. In the remainder of this chapter we shall not distinguish
between discreie and eontinuous variates. Lxpected valued will
always be given in ferms of integrals, but it is to be understoodthat the
integrals are to he repluced by sums in specific [_)1'oble1n§‘.\'};'hi'ch deal
with diserele variates, X7, N\

Two sitple properties of % are worth noting. I ;t:«%?ﬁstributed by
f(@), if ¢ is uny constant, and if g(x) and A(x) arg asly functions of z,

then K7, :
Fleg(e)] = eElglz)laN" ©)
Flg(a) + hix)] = Elg@DF Elht)] @

These two relations follow direetly, ﬁrdrh the corresponding relations
for integrals: FAN

i

et )i eg @) e
Ngtey + b(o))f (@ade [o()f(@)dz + [RE)f()de

Of course (6) aud (7) remtatn true if the single variate  is replaced by a
set of variates r,, 1,2’%:.:'._ T

5.2. Moments:; \Fhe moments of a distribution are the expected
valties of the péwers of the random variable which has the given dis-

-t.ﬁ].)_.ﬁ_t_-i_dﬁ- \‘Rh& rth moment of x is usually denoted by i and is

Qt.

S W = Ean) = [ #i@i 0
O

Tﬁﬁrst moment g is called the mean of z. The moments about any
Btrary point @ are defined as

Bz — o) = [, (v — ayf)dz @

?::d when g is put. equal to the mean, we have the moments about the
fan, whi )
-880, which are usually denoted by

b = Fliz = ) = [ 7, 0 = sy ®
93



§5.2 EXPECTED VALUES AND MOMENTS

We have
m= [ df@de -l [ j@)de
= — p =0 (4)
and

= [° @ = W)

= 7 [~ 20 + () Uf (@

=y — 2mut + (4))? \

= 4 — ()2 A6
This second moment about the mean is called the varianceQf .

The mean value of a variate locates the center of 1a disttibution in
the following sense: If the z axis is thought of as a Bar'with variable
density, the density at any point being given by f(:::’):,\t-hen it is shown
in elementary caleulus that the value z = ] isthe center of gravity
of the bar. Thus the mean may be thought ofids’a central value of the
variate. For this reason it is often referred %05 a location parameter
—it tells one where the center of the digbribution (in the center-of-
gravity sense) lies on the z axig. Other Central values are sometimes
used to indicate the location of a, ‘distribution. One i3 the median,
which is defined as the point at which a vertical line biscets the ares
under the curve f(z). “ The median is therefore the point x”, say, such
e Y, \

u' ) o
[dedas = 35 = [ * sae (©)

Another eentral valug for densities with one maximum is the mode,
which is the poitiat which f(x) attains its maximum, One could
easily devise otlier central values ; these are the ones commonly used,
and of t-hfﬂ\tfl}éé the mean is by far the most useful,  We shall often
employ Helsymbol p without the prime or subseript to denote the
mean., 4\

,'j_l_jllf;j\v_ariance #2 of a distribution is 8 measure of its spread, or dis-
Pergion.  If most of the ares, under the curve lies near the mean, the
variance will be small; while if the area ig spread out over a consider-
a,l_)l_e range, the variance will be large. Disiributions with different
.vamiances'are plotted in Fig. 80 in the following chapter. The variance
18 necessarily positive, since it is the integral or sum of positive quan-
fities. It will vanish only when the distribution is concentrated at
one point, 7.e., when the distribution is discrete and there is only one
possible outcome. The symbol o ig commonly used to depote the
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MOMENTS £6.2

variance; the positive square root of the variance, ¢, 15 called the

standard dezinlion.

““We shall look o Titile further into the manner in which the variance
characterizes 1he distribution.  Suppose fi(z) and fofx) are two densi-
tieg with the s mean =uch that

[ = @) 2 0 o

£(x) N\

N\ Tra. 25.

fOl:"eYeiy valne of @. Two such densities are illustrated in Fig. 24.
I%@“ﬁe shown that in this case the variance o of the first density is
:&? ller than the variance of of the second density. We shall not take

¢ time to prove this in detail, but the argument is roughly this: Let

glx) = fi(z) — fol®)

w @ .
bere f1(z) and fa(z) satisfy (7). Since f_ g(z)dx = 0, the positive
a N .
Pf;a, bP’twe‘en 7(z) and the = axis is equal to the negative area. Tur-
be Il;more, in view of (7), every positive element of area g{z')dx may
alanced by a negative clement g(z')dz’’ in such a way that @
96



§6.2 FXPECTED VALUES AND MOMENTS

is farther from u than z’.  When these elements of urea are mutiiplicd
by {z — w)?, the negative clements will be multiplicd by larger factors
than their corresponding positive elements; hence '

S @ = wpwde <o

unless fi(z) and fofx) are equal. Thus it follows that o < gi.

The converse of these statements is not irue. That is, if one is told
that ¢} < 6% he cannot conclude that the corresponding  densifies
satisfy (7) for all values of @, though it ean be shown Lhat {7) st be
triie for certain values of . Thus the condition o} < of doegiptgive
one any precise information about the nature of the corrésponding

.

R X
\\ " Fia. 26,

distributions, but, itisevidence that f1(x) has more ares near the mean
than‘ sz{x), ab ledsh Tor certain intervals sbhout the mean. The two
densities in Fig{gs6, for example, might have aboyt equal variances,
and one co@ﬁlter either one slightly o as to make it have a smaller
or larger Yariance than the other.

The.third moment py about, the mean is sometimes called g meagure
ofdasymmetry, or skewness, Symmetric distributions like those in
Figs/ 26 and 30 can be shown to have ps = 0, A curve shaped like
fi(z) in Fig. 27 is gaid to be skewed to the loft and can be shown to
%:La,ve a negative third moment about the mean; one shaped like fa(z)
s called skewed to the right and can be shown to have a positive third
moment ghout the mean. Actually, however, knowledge of the third
moment, 'gives almost no clue as o the shape of the distribution, and
we mentpn it at all mainly to point out the fact, Thus, for éxar,nplc
the density f3(z) in Fig. 27 has p, — 0, but it is far fro;n symmetricr

96



MOMEXTS §6.2

By changing e enrve slightly we could give it either a positive or
negative third numment s owe pleased,

While a particnlur moment or w few of the moments give little

imformation abemt o distribution, the whole set of moments (ul, s,
i ) will ordinuily determine the distribution exactly, and for
this reazon we =ldl hove ocension 1o use the moments in theoretical
work,
“Tn applied #ali=ties, the first two moments are of great importance,
ag e shall s, b the third and higher moments are ravely useful,
Ordinarily ore does not know what distribution function he is workiag
with in o practical problem, and often it makes little difference(bat
the actual stuipe of 1he distribution s, But it is usually wedessary
to know at leu-t the loeation of the distribution and to h&}{(i;szime idea
of its dispersion.  hese charaeteristies can be estimatgdjl}y éxamining
AL ,“}\

£{x)

TG, 27,8 .7
asample drsven fro 4 st of obj ect.sf[g’ﬁawn to have the distribution in
Question. This e=limation problem’ is probably the most Jmportant
problem in applicd <latisticseqnd a large part of this course will be
dev_oted to a stwdy af it .\
Hustrative crample: -‘iﬁ("{’thn mean and variance of the hypergeo-
metrical distribution AN\

265

1) 0/ -0,1,2 -,k (8)
’{@ (m =+ :a) ‘ T
..\\ ‘{\ .

fhl:.{i pf'éﬁﬂem will illustente a technique that may he used to ﬁnd. the
"‘f{tDOUts of n grent many diserete distributions. The first step 18 o
‘f’e he distribution to determine an identity in the parameters. Since
M) = 1, it follows that

kg

Z (m,) ( n ) _ (m + n) (9)
f S\ L —=x k
‘;;r auy positive integral values of m, n, and & [Actually, as we have
Rwen before, the range depends on the relative sizes of m, 7, and k, bub
.e “an avoid deuling with these details by defining the binomial
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§6.2 EXPEQCTED VALUES AND MOMENTS

T Ll *
eoefficient (;) = ﬁ! to be zero when either b or a — b s
negative.]
The mean of the distribution is
%
8= EB@ =Y f(2)
0

k

= ((: 1%; RS
k R,

In this expression x may be ¢anceled with the x in the deg}g?ﬁi nator of

m i ] z"::"
($> to get . ,"’t\\
(™Y = m =1} N
) T T — 1 '\\'

A _

k N,

m — 1)

32‘1 " (50 ‘1)(36 - 9«“)
o m -+ n

where we have written t}w@:m to range from 1 to & hecause the first
term in (10} vanishe a@d}may be omitted. Actually, since we have
defined a binomial ’cpsé”ﬁcient to be zero when its lower index is nega-
tive, there would bewio objection to leaving the limits 0 to k. Now in
this last expression’let us substitute y for # — 1 and factor out factors
which do n;}ﬁii})i’roolve the summation index. We get

and we have

(11)

:\'\\“, e 3—31 o 1\ . -
‘.\’:":; (m + ﬂ) =g ¥ E—1— y)
W k

}his sum may be evaluated by means of the identity (9); we simply
replace m by m — 1 and % by £ — 1 in the right-hand side of {(9) to

get
§ o= m fm—14n
(m n) E—1 )

m+n (13)
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To get the varinie. we <hiail need the second moment

W= Y )
o=
If we substitute direetle Tor fir), we shall be able to eaneel only one
of the @’s, and ibe neher e will remain to prevent our using the identity
to evaluate the ~m.  The (rick here is to write 2% in the form

ale — 1) +x

to get &\
g Sale — 1if(r) Sxf(x) <\gk4’)
. e
We have alrcady v a'vnted the second sum in obtalning the mean, and
the same procedure used on the first sum gives A0
D
d A0
o) S
—_ T ’ r k —r . N
Bz — 1)) =+ " A \\“
mo—e H ;'}\ ’
i :':;‘
* ’ ":" '
\ el — 10 m _‘?}‘ n )
=, B/ N\ -
—'_ Imesny
Q‘\ﬁ.‘_ )
= "’i{_’."_’;:_l:\xi, m — 2 n )
TR \ ¥ k—2—y
M ] S0
_i_'{;:f\*,— ) (m - 24 ::.)
'\ o + n EF—2
*I\\( IN ”)
a.\*;\;* _m lm_—_lﬁ(h — ]_)_ (15)

—_l_)
Mding (13) 1, this, we get ) in accordance with (14); the variance

I . .
an:‘hﬂl.obtamed by subtracting the square of (13) from p; in aceord-
e With (3),  Thus the variance is

ot M = DR =1 mE ( mk )
im Fnpm+n—1) m+tn m + n
__mnkOn 4w = B) (16)
{m -+ n)%m + n — 1)
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86.3 EXPECTED VALUES AND MOMENTS

The general method for higher moments is now evident, To get
the third moment, we would find the expected value of

a(z — Dz — 2)
since this is equal fo 23 — 3z + 2z, we have
s — 3pp + 2y = Elz(z — 1)z — 2)]

and having evaluated the right-hand side of this expression, we could
solve for uj, since f and 4 have already been determined. Ilaying
the third moment, we could obtain the fourth by finding the expetted
value of x(x — 1)(z — 2){z — 3), then solving for 4} in R\ \J)

iy = Ous F 1l — 8 = Blale — 1)z — 2)(z 23]

The right-hand side of this last expression is called the:foufth Jactorial
moment of the distribution, The rth factorial moni:é}t iz

Blate = 1)(e = 2) -+ - (& 50 1)]

IHlustrative example: Find the mean‘ah}ivstandar'd deviation of
the continuous distribution f(z) = 2(0>2), 0 <z < 1. The rth
moment ig A\

#o= E(zn) = len’?(l — r)dx

ool
<=2 L (& — )z

O 2
N T —
N T rEOEEY
The mean is
O\ / - __2__ 2]
”\:t\‘.. =y = 9 3 - g
and the vafahce is
‘s's\\ 2 1 1
) o=~ =5 2. o
AN 3X4 9 18
hemgev’
4 1 1
gF = —_— =

5.3. Moment Generating Functions.
distribution exist (i.e., when all moment
assoclate a moment generating funetion
1s defined as E{e), where z
ous variable; the expected v

When all the moments of a
s are finite), it is possible to
with the distribution, This
is the random variable and { is a continu-

alue of ¢ will be g function of ¢ which we
100



MOMENT GLNERATING FUNCTIONS 86.3

ghall denote by

mif) = B = f_: etf(z)dz o)

It we differentiate the members of this relation » times with respect to
t, we have

i . = .

.f_._: . l\!‘} — f ‘{'rf""".,lr(.l.')dﬂ: (2)

ehf —w

and on putting /0, we find 2N
i . A\
Loy = £ = g A3
it o,
N

% \
where the symbol on the left is to be interproted to mesn’the rih
derivative of m{!) cvaluated at ¢ = 0. Thus the moments of a distri-
bution may be obtuined from the moment genem\ti:h‘g function by
diferentiation. \™
If in equation {17 we replice e by its Seri,eé\}ﬁpansion, we obtain
the series cxpunsion of mif) in terms of t'.}m‘]r’hsfr'lcnts of f(z); thus

»

- 21
m() = * (i +at + % (™ F gy @)+ )

I

. 1

1+ pif + ;Z—TPET” + -

&1 O

== ;'5 \'; 4:
I h\!\ (4)
im0 A

fl‘_i_)_D.l.Which it is nghirevident that g may be obtained by differentiat-
g mt) » tim(;;{;ﬂ:h’éi then putting ¢ = 0.

We may iuﬁgﬁmtfz this technigue for finding moments by obtaining
the mean gnd variwnce of the Poisson density:

N
~O - |
A% fay =" ¢ #=0 1,2 -
We ﬁnd
. 2 e:rcg-—ga'z
mit) = E{e®) = S‘ eTeTr
L !
r=0
=g ° {ﬂ EG_EJJf
- Lo xl
=0
= e—aenc‘
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§6.4 EXPECTED VALUES AND MOMENTS
The first two derivatives are

m'{t) = e °geter
m'(f) = e*acte* (1 + aet)
whenee
p=m{0) =q
ps =m0} = a(l + a)
cf=gqg{l+a) —a2=a

The factorial moment generating function is defined as E(t%), and{he
factorial moments are obtained from this function in the Sape Avay
as thé ordinary moments are obtained from E(e™) cxcept thabJid put
equal to one instead of zero. This function sometimos siniplifies the
problem of finding moments of diserete distributions. Wt T8, howoever,
of 1o help in the example used in the preceding sectidn, because the
sum Z¢7f(x) hag no simple expression. For the Pofeon disiribution:

E(tz) = Bl~1) A\

Il

o:~\ g
whence N
E’(x) = aea(t—]:)’];‘_l =q
Blow — 1)] = %] = a2

giving the same moments as héfore,

Sometimes we shall havw\‘occasion to speak of the moments of a
function of 2 random vafiable. Thus we may want the moments of
h(z}), where z has the digtribution f{z). The rth moment of i(z) is

N Eh@)] = f_: [ (@)]f (2)dx (5)

and a fUJJCti;QQZ}"LiCh will gencrate the moments is obviously
: ':Z\\“ ) = [ oo (©)
'&é;\ﬁoments for Multivariate Distributions, The preceding ideas

are readily extended to distributions of several
for example, that we have three variates
The rth moment, of ¥, for example, is

EQ@n = f__: f_: f_: yfx, u, 2)dz dy da (L

Besides the momients of the indivi
moments defined in general by

variates. Suppose,
(%, y, 2) with density f(z, ¥, 2.

dual variates, there are various Jjoint
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THIL MQMENT I'ROBLEM §b6.5

Elanrzy =- f: f___: f_wm zyrfle, ¥, 2)dz dy dz (2)

where g, 7, and s zre any posilive integers including zero. __The most
important joini moment is the conariance, which is the joint moment
about the mewn- «f 1he praduct of two variates. Thus the covariance
between z and = I~

ew= [T [T e = Bl = B, 3, Ddzdyds @)

and there nre (wo i her covarinnees o and oy, defined analogously.

The sorrelation botween two variates, say « and 2, is denoted by e\

and 18 defined by \

_— A\

Pzz= = Eiz_ N '(4-)
020 « M

N

where o, and o, are the standard deviations of  and 2.
Also one can doi ne < joinf moment generating funglidn

i I‘\[J-I__ 1'4_3_. f:;) = E(Chx'i—!ay-f'lsa) y (5)

Itis clear that 1T +th moment of g, for exa l¢y may be obtained by
differentiating 1l monent generating fugéfion r times with respect
to {3 and then puiling all the ¢'s equal, felzero. Similarly the joint
moment (2) woitid be obtained by diif(?i‘ént-ia.t-ing the function g times
with Tespect, ti) /-, ¢ times with rogpeet to fz, s times with respect o
ﬁ.’_!ﬁ“‘_l_d then putting all the ¢'s eql;;il to Zero.

0.5, The Moment Proble Ve have seen that a distribution FIED)]
determines u ol of momenfs X ul, ub, 45 - ) One of the important
problems of theoretical <Putistics is to find f(z) when the moments are
Bven. A study of ik problem requires advanced mathematical
technjqu%, and weall have to omit it,  However we shall prove the
following theorefinvhich will be required in our later work: ‘

.{fi"f_‘_o CU”:N@-E??;';{-S densities have the same set of moments q’f'?.’d.?’f Fh.e
ﬁfﬂ:@—”mce-ﬁf (e densitivs has a series expansion aboul the origin, then the
Fif?_@_g?}sééiég are eqitlvalent.
t-]11le 1&9 the two densitios ave rapresented by f(z) and g(z) and suppose

Ties expansion of their difference is

N Fzy — gla) = ¢y + o F-cex® + 77
oW let us comsider the integral
f‘” (co + o3z + e’ + Mf@) — g(z)lde

= {‘(](1_ — 1) + CI_(.U';_ — ,U-;) + v
=0

f,: ) ~ gt)]2 da

1}
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£6.6 EXPECTED VALUES AND MOMENTS

sinee the two densities are assumed to have the same moments. The
funection [f(r) — g(x)]? is necessarily positive or zero, and as wc have
found the area under the funetion to be zero, we must conclude that
the funetion iz zero and hence that

fxy = g(x)

Under the conditions of this theorem it follows that

If two random variables have the same moment generating function, then
they have the same density function. .
For if the variables have the same moment generating function, t-h?y

necessarily have the same moments. K\

5.6. Problems O

1. If 5000 lattery tickets are sold at $1 each on a %20@0 car, what
Is the expected gain of a person who buys three tickets?

2. A coin is tossed until a head appears; whatis'the expected num-
ber of tosses? A

3. A bowl containg n chips numbered Br}l 1 to n; m are drawn
without replacement; what is the expectéd value of the sum of the
numbers drawn? D

4. An event ocours with probabi]j’ﬁy p and fails to oecur with prob-
ability g = 1 — p. In a single traf, what are the mean and variance
of z, the number of successes 78"

5. If n trials are made o bhe event described jn Prob. 4, and if #

is?the total number of sue¢dsses, what arc the mean and variance of
x? \\"

8. Find the mg@n: of the continuous variate = distributed by

A\
'ﬁng = ‘—2}7; g it —w < x < e
\V Y

7. E'm’ﬁ\fhe mean and variance of xif f(z) = 1, 0 < 2 < 1.

8:<jifi_pnd the mean and variance of 272 Hfz} =1,0<a < 1.
m?.-. 'Find the mean and variance of 2 if

i F@=1/G+1? O<a< w

10. Show that B{zy
distributed.

11. Show that

) = E(z)E(y) when z and y are independently

104



PHORTKM:S §6.6

12, What is the median of @ i)y =201 —2),0 <2 <1?

13. Find the mument generating function associated with the
density f(z) = a¢ & > 0, anduseit lo obtain the mean and variance
of z.

14. Find the faclorinl moment generating function for the hinomial
distribution, and use it to obtain the third moment 3.

16. 1f z has the density f(x) = 2/2, 0 < z < 2, find the rth moment
of 2. Then shov that y = x? has the distribution

gly) =11 0 <y <4

by showing that » has the same moments as 2% O\

16, It f(z, y) = ne—ot+, ¢ > 0,y > 0, find the generating finetion
for the moments of # = z + y. Deduce the distribut-iog‘bf 1 from
the form of tliig senerating function, O ?

17, Show that if o density function f(z) is symmet-ri&ﬁ’bout a poinf,
sy b, [Le, f(b -+ o) = f(b — ¢) for every value ole]; {hen that point
mugt be the mean of #.  Show also in this casgibhaﬁ; all odd moments
about the mean must be zero. T\

18. Given the moment generating function xm(&) for the moments
&Ibout the origin, how would one 01_)L&in.’$hé moment generating fune-
tion for the moments g, about the m(‘an'?

19. In place of the moments ui Another infinite sct of constants v,
salled the cumpdants of u distribution is often useful for characterizing
_t-he distribution finetion. AR cumulants are defined by the generat-
ng function c(f) = log -m\f\()';’wlme m{t) is the generating function

for the 4, Le, vy K evaluated ot ¢ = 0. Show that v1 = B

;-. i
and vy, = g2, \
20. Find EQT‘?“{'}}'I cumulant v, for the density f(x) = @&, 2 > 0.
?1‘ Showgthiut if 1(¢) generates the moments about an arbitrary
Puint b, i %y )
4 ~\‘ ' 3

NN

QY u@ = [ 7 eef@d

Eh:ufo(t) = log 3 (#) will correctly generate all the cumulants exce?g
1o beH:st, _fhe cumulants of a distribution beyond i are thus sal
mvariant under translations of the variate.

22* éfhx has cumulants v,, show that ¥ = kx ha§ cun:tulants kf'{il
are i.nd oW that the correlation between two variates 18 ZEIO 1 te.);
ok ¢y ependently distributed. (The converse of this statement 1

Ue, as the following problem shows.)
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§6.6 EXPECTED VALUES AND MOMRENTS

94. Let « have the marginal density f1(z) = 1, =14 <2 < 14, and
let the conditional density of y be
Jylz) =1 r<y<ae+ 1, -1 <z <0
=1 —z<y<l—z0<e<lg
=0 otherwise

Find the eorrelation between x and y.
25. Could the function E[1/{l 4 ¢z)] be used to genemtz\the

moments of a variate z?
_ »
(.3\%
\/
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CITAPTER 6
SPECIAL CONTINUOUS DISTRIBUTIONS

8.1, Uniform Distribution. The simplest distribution for a con-
tinuous variate i+ 1he uniform density: 2\

. 1 Y
flxy = - — a <z <p N

3— «a P\
=0 otherwise A\ 7

which is plotted in Fig. 28. The probability that an Olééi'w'a.tion will
fall in any interval within « < 2 < 818 equal to 1/(8 3 &) times the

) N
A

AN
L >
R W

&
PR I X

¢ Fia. 28.
1engt.h of the inte;‘ﬁﬂf The distribution is particularly useful in theo-
Tetical stat-ist.h«{})é’t;ausc it is convenient to deal with mathematically.

W_e are epgbled fo deal only with this simple distribution when dis-
Cussing ceftsin properties of distributions in general by the following
theom:}

Any ﬂensity for ¢ continucus variate & May be transformed to the wni-
form density

fa) =41 0<y<l1 @)

% iE:wing ¥ = G(x), where G{z) is the cumulative distribution of L
tn‘bui'ear that 4 must have range zero to one since a cumulative rils;
the dlon— must vary between zero and one. We need only show tha
et; ensity of y is f(y) = 1 over that range. Now & va'lue _Of y is
fhined by drawing a value of z, say To, and substituting 1n @)
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§6.2 SPECIAL CONTINUQUS DISTRIBUTIONS

to get & corresponding ys = G(xo). The transformation y = G(z) sets
up & correspondence between points of the r axis and points on the
interval (0, 1) on the y axis, To find the probability that y lies in an
interval, say @ < y < b, we {ind the values, say o’ and ¥, on the # axis
which correspond to ¢ and b, as in Fig. 29, and compute the probability
for that interval (o', ') in terms of z. Thus,

Pla <y <b) =G — Ga)

but by definition @(d") = b and G{g") = ¢; henee A\
Pao<y<b =b—a b<a<hb<l1 OV
¥ N\ e
1.0 O

g({]\

N

: ’\’s.
’//%g )
Vi

a g x

Suppose we denote the cumultive distribution of ¥ by F(y); then
,{F;ﬂ)) —Fla)=b—aq
and replacing b by‘y\? Ay and a by y, we get
@7 Fu+ay —F) _
o> &
Thfs lm} tlof the expression on the left as Ay approaches zero gives the
demﬁu% of the cumulative distribution, which is the density we seek:

N

i

~Q @) = d_d“ P = lim 2V E A0 = FG)
\ ) Y Ay— 0 Ay

?vhich proves that y has the densi ty (2). The transformationy = @(z)
18 called the probability transformation.

By IMeans c:f this thfeorem 1t is possible to demonstrate many prop-
erties of c-?ntllulltj}ts distributions in general by proving them merely
for the uniform distribution over the unit interval,

.B(f: The .Norrnal._ Distribution. A great many of the techniques
used 1 applied statistics are haged upon the normal distribution, and
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THT NORMAIL DISTRIBUTION §6.2

much of the remainder of this course will be devoted to a study of this
distribution.  The density is

L N )

nir) = "
() NG

and the function is plotled in Fig. 30 for several values of s, Changing
p merely shifts the curves to the right or left without changing their
shape. The function given actually represents a two-parameter fam-
ily of distributions, {he parameters being p and ¢® We bave used the™\
symbols ¢ and ¢¥ 10 ropresent the parameters because the parameters
turn out, as we shall <ce, {0 be the mean and variance, respect{gs’l};,bf

the distribution. \J
7 i{x) '\' "\.
LB
[H-]
04
02
/ {
o= / : x"\\ : :
2 = 0] N 3 Py 5
O Fic. 30.
i . N : e bed that
nce n(z) is giveu'to be a density function, it is implied tha
\{..\’:' 3
2\ n(z)de = 1
p. [

but wo should satisfy ourselves that this is true. The verification is

2 w4 . : . : ‘

{; ta_‘hat troublesome because this particular function does not inte

ﬁﬂad 10t0 a simple closed expression. Suppose we represent the area
er

the curve by 4; then

4’1 = .———I__ * e—(-1"“.|1:'2f20'2 dx
V2rg J-w

and .
M making the substitution



§6.2 SPECTAL CONTINTOUS DISTRIBUTIONS

we find
1 =
A= et d

We wish to show that 4 = 1, and this is most easily done by showing
A?is one and then reasoning that 4 = 1, since f{z) ig positive. We

may put
A? = L fﬂ e 1 dy —1.: [ ) e+ dz
Vi | Vo J . A

1 f“‘ f‘” A o
= — g gy dy oA\
2r § L f_ . A\

£
« N/

writing the produet of two integrals as a double integral. ‘}SID. this inte-
gral we change the variables to polar coordinates b( {he substitution

N

Y = rpin @
2 =rcosd ’:ﬁ\\“
and the integral becomes : O

¢’ N/

Ar= L 7 [ ¥
=3 488 re ¥ dr 48
D.”. ;0’

= 11\]?:‘?::6:%” dr
=3
ne '
Since the integral of a(z) does not have a simple functional form, we
can only exhibit ﬁ}gf}’.cumulative distribution formally as

</
£ ) ]_ T
(N Niz) = ~[{t—1/207 2
v S “ @
and if x{e\\lé'ﬁ
‘s.;; t —
- o ¥y=- a -
Q%‘ﬁ'nd
1 (& —u}for :
v N = —1 2
) \/21rf_m c ®

and given a specific value for
by numerical methods.
in Table I1. Since the d

(x — u)/o, the integral can be computed
A tabulation of this funetion may be found
ensity is symmetric about g, i.e., since

2t~ a) = nlu + a)
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TIIE NORMAL DISTRIBUTION §6.2

it follows that N (x) for (x — u)/o negative isequal tol ~ N(z"), where
@ —p)fo = — (& — w)/o. The graph of N{z) is given in Fig. 31,

To illustrate the 1se of the table, we shall find P(—1 <2 < 4}
when & has the densitys

n[I) = - lf:;e—ﬂx—QNBﬂ (4)

4 £ 2x
We note that

N\
and thus that the valies of (7 — @)/e corresponding to —1 and 4 arli -
O\
02 3 4-2_1 O
r 4 4 2 N
2 "\ 4
Wi &
R
1.07—- .
5 :zﬁ"
—_— / ,"‘i\
+ -3 + +
M3 u-2o Ao T4 o at2e  atic X
AN Fre 3L
henge: \,
BB < 2 < 4) = N@) — N(=1)
&\\“' = 6015 — (1 — .T734)
N\ = 4649
."\ -

hejttmgggl‘efit convenience that N(z) is of such a form that 1tT;11ee1flaI;05tj
UTIE l%lat"d for various combinations of valu(:_s of_p ar?d g e tr

0 tion y (x — u)/o brings all normal distributions to the saglle
er?;’ called the siondard or normalized form. We shall }'eservrzl it:
Gum\ZT " and N henceforth to indicate the‘ normal denmtyt 9,1; e
this \v?ﬁ“*e form.  Often we shall wish to indicate thr: parfix?\;e( ors, "
%Darats be dong by writing the function‘s asniz; o ). anl :sfl;;, thi;
lotgti e the‘ Parameters from the variate by a semucolon. The
. 108 the dlStI‘ib'Ll[.__iDn (_1) would be Symbolized by n(x, 2, 16)
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§6.3 ' SPFBCIAL CONTINUOUS DISTRIBUTIONS

standard normal distribution is then
1

/2

nlz; 0, 1) =

gic (5)
and its eumulative form is
N@: 0, 1) = fjm n(t; 0, 1dt (6)

We shall now find the moments of n(z; g, ¢2) by finding first the
moment generating function. The computation is as follows; 2\

mif) = E(gw) = grE(ptla—1) ':\a\,
, " o 1 3 ) ) B .',\: o

= gts ghe—s) o—!11/208 (z—p)? gy $J
—«Vore PR
S
1 L] '""j ’

= glt e {1 o e P20z il] (lop
V2 o f,_ w W\

W

Or completing the square inside the bracketq\j,t becomas

(#— 0 — 2%z — p) = (¢ — )2 7\:9&2£(x — u) + o2 — ot
= (z — p )2 — o
and we have ™

N
“'

'(C; v -]
mil) = etrgorss o 1 f g gt} 2 o
o »

The integral together with'the factor 1/4/2r o is nceessarily one, since

it is the area undei@»ﬁormal distribution with mean u -+ o% and
variance g2, Henge,

m{l) = gtuttonz) N

. A
On dl[“fercgt\ati‘ng this function

twice and substituting { = 0 in the
results, wesfind i

S -
O mo
AN By = 0% 4 pt
& 4 Variance = p) — ()2 = g2

\thus justifying our use of the mome

nt symbols for the parameters.
6.3. The Gamma Distribution. le p

The function

1
fz) = alpER e e >0 m
‘ =0 <0
15 called the gamma distribution,

 called This is a two-parameter family of
distributions, the parameters being . :

@and 8. B must be positive, ?md_
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THE GAMMA DISTRIRUTION §6.3

. o must be greater than minus one.  The function is plotted in Fig. 32
for 8 = 1 and seveend values of «. Changing 8 merely changes the
scale on the two axes, as is evident on cxamining the form of the

function,
To show that the funetion represents a density (has unit area), we

shall evaluate the ntegral

w0 ] ~
| = j; IdTl pep—=i8 dy

. A
= yoe v dy R
¢ O

PN Fia. 32.

0? substituting i fom tw,d, henoe A is necessarily a function of a only.
@ >0, we mzm;»{g‘n‘f.'crgl-atts at once hy parts to obtain

O = oy e
Wl * j; gy
ém)a’ 1t follows that

Ala) = ed (x — D (2)

If o . .
suc04 'S & positive inleger, we may apply this recurrence formula (2)
Cessively to ohtain

1d e Ale) = afa = (a—2) -+ - @DAO

A(D) = fo‘“e-—vdg =1
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£6.3 SPECIAL CONTINUOUS DISTRIRUTIONS

we have
Ale) = a!

when « is an integer. The function A () is often denoted by T« + 1}
in mathematical literature, but we shall use the symbol «! whether or
not o is an integer.

In practically all applications of the distribution, « is either an
integer or a multiple of one-half. Hence for our purposes we need
only to evaluate (14)!in order to be able to compute ! for any value
of & we may encounter. QO

(41 = 15(=19)! &
=15 [“yHevay
and if we let y = 2%/2, we have \\
[ VN PN
09l =34 )" VEceng

w 1 € &/
=7 f g (g
0 iV (2
VE S
2.8

since the integral is half the atea under a normal density funetion and
is therefore one-half. Kuowing this number, we ean cvaluate a! for
any multiple of nne-hié\b‘y using the relation (2); thus

BT =535(39)! = 54 X 314!
o 15 v/«

:O\ e/ = 8

N
The ’Q&ﬁlative distribution is

N

Q¥ Py = [ olmrena aso ®

and is, of course, zero whenz < 0. Tt must be evaluated by numerical

methods unless « is a positive integer, in which case the funetion can
be fourd by successive integrations by parts o be

Flz) =1 — LTI AN IF £AN 1 (2\*] _,
(r} =1 [1+ﬁ+21(3) +3—I(§)+.“+&_IB _e_!ﬁ

x>0
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TI BETA DISTRIBUTION £6.4

But in any case it i» Lsually simpler to refer to tables of the function in
dealing with specitis problems,  The funetion F(z) 1s called the fncom~
plete gamma ferrinon nnd has heen extensively tabulated by Karl
Pearson (¢ Tables oo il Tneomplete Gamma, Function,” Cambridge
Upiversity Press, Lomdon, 1922},

The moment peucrating function for this distribution is

M)
: !
pidl = ¢ = xR da
i ju Q’!{jaTL

* 1
o [ Ay dy \
[ 2 N e
) oA\
n substituting  lor o 3. This may then be put in the formy~

L ¥

m(l) - -l.' / yrev U dy ~‘ 2
[ ,,'\\’
| “ (1 — gt _.~‘
Ty g L 'T)— N Q00 dy
T T R o ! ) 1 N\
I \ )
i1 - et PN

movided ¢ < 173, since ithe last integ{‘s’l “represents the area under a
gamma distribution with parametoisi e and § = 1/{1 — 8¢), and is
therefore one. On dilferentintingdm(t) twice and putting ¢ = 0 in
the results, we find 4

PANY
#{{qﬁ’(a + 1) (6)
= ge+ e+ 2) @
’\’o_o — IS"‘((I + 1) (8)
64, The Bet'@\:ﬁj:réfribution. T'he density
'fi} = &{X;’.—_ﬁ_ﬂ xﬂ(i —_— I)B O < T < 1 (1)
e elg!
= () elsewhere

~

i ) 4

i(}?ﬁi the beta density. The function represcnts a two-parameter

iy of distributions, and a few examples arc plotted in Fig. 33.
18 parametors o and 3 must both be greater than minus one. The

18trhyt; . A Lo
W enbutmn becomes the uniform distribution over the unit interval

Tox :
9800w that the avea under f(x) is one, we shall compute the integral

Ale, B) = f; zo(l — 2)f do @)
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| Clearly A will be a 1

reciprocal of the constant multiplier in (1),

gamms distribution,

Al CONTINUGUS DISTRIBUTIONS

wetion of « and 8; we wish to show that it is the
Referring back to the
Wwe may write

algl = (/; pre d’c) ( L yrev d-y)
—_ “ R Be—let oy o
j; ﬁ) &P thr dy
F{x} N
a=4 P, ’\:5'
20 £=z O
O
a=2 "'\:"
= A~
15 BA=2 .\\}
'\\.l
1.0 ”
a=| R\
8=l oL
05 ~l
Q
O
‘ \\
i) T
'0:2\, 04 08 08 1.0 X
4 ?;“; Tre. 33,
X oV .
and In thisNést integral we shall change the variable « Lo uw by the
substitufio
,.\*"\?; y=
™ Ty
oV
o
o= WY dy = Y d.u_‘
— (1 — u)t

Since u obviously has the range zoro to one, the integral becomes

algl = [m
1]

_ ¥

! uy \"
T 8o/ 1—u)
];) (1 — u) ve
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OTHER DPISTRIBUTION FONCTIONS §65

Tn fhig integral we cluinge g Lo 2 by the substitulion

o= (P — upw dy = (1 — uidy
to get
algl = [ 'D[nl (1 — et Bl oy dp

. ([j Y g mn)(j;l ue(l — u)b r.f.u)

= e A ) ﬁl wr(l — u)® du

N
which shows thet ., 25 has the stated value, A @ —1,8~1) Is
ealled the beia Juuciion of & and § in the literature and is ugtally
denoted by Biw, o1 ) {;}\
The cumulative distribution, often called the incomplelgbefe func-
lion, 1s D ’
Flay =1 3}{%)}

!

e de a4 1 \
/ Lre - .?__—l___ 191 {1 — )8 i ':1\\.0 < g <1 (3)
J i

= ANV oz>1

and has also hecn extensively {abndated by Karl Pearson (“Tables of
the Incomplete [30x Frinetion,” Cunlikdge University Press, London,
1932),
The moment generuti ng fane WO for this distribution dees not bave a
smple form, but ii0 _munu\]a’t{ﬁ‘}re readily found directly:

\\¢’
#F"E " (I‘.‘;‘ :‘—S—l-}':\[t .
r= L) = LT \J arre(l - ¥ da

NI
R\ 4 Jo

et mll) m\sr ri! /‘1 e ¥ 8+ r A+ D ety — e

ad
™S

' , R CEI
~ 38 e + ot 4)

snce G
e elintegral miast he one,
i d-ﬁ' Other Distribution Functions. A distribution which we shall
n . . . B . R i ;
useful for {1y rative purposes 1s the Cancliy density

| =

fley =~ Lo e cr<w (1)

Db — it

B

Whig} : .
e Lhas g myen,, otly in a restricted scnse and no higher moments,
"mulative distribution is
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1 f° dl
R

él—arc tan {f — ,u)—l
T

= % + %arc tan (z — ) {2)

Pegrson’s Distribuiions. A general cluss of distribution functions is
given by the families of solutions of the differential equatinn Q

N

dy _ _(+ay oA\
dz bx'+ ez + 4 S\

N

(3)

The equation was obtained by Karl Pearson by puttihgy 'dx equal
to the slope of a straight line joining two successivev\pijinta of the dig-
crete hypergeometric distribution. The solutidhs) of Lhis equation
were classified by Pearson into twelve families of curves, those of one
family being called Type I curves, those of @gecond Type 1, and so
on. The gamma distributions are eSSthi’&:ﬂ}; the Type LIL eurves of
Pearson; the normal distributions are his"T'ype VIT curves; the beta
distributions represent his Type 'Ij:e.urves, while with a = 8 they
represent his Type 11 carves. N

The different families of curyes arise when different relations are
assumed betweon the const@ntﬁ'a, b, ¢, d in the differential equation.
Thus, for example, when blend ¢ are zero, the equation becomes

\\dy !
O YTt
and its solutionMsd

O3 1
AU lgy=t e tary K
or N\ ) .
™ ¥ = kelztayied
AN
Kﬁ)igh bef;omes the normal density when d is taken to be negative and &
18 determined 80 a8 to make the area under the curve equal to one. By
considering various other conditions on the constanis in (3), wecould
derive all twelve of Pearson’s types of curves, but we shall not develop
these because most of them have not proved to be of great importance
in statistics,
The Gram-Charlier Series. A wide class of density functions may
be represente.d by an infinite series called the Gram-Charlier geries.
Suppose f(z) is a density function and suppose its mean and variance
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OTHRER DISTRIBUTION FUNCTIONS £6.5

are o and % Lt

then y has zero mean and unit variance. The Gram-Charlier series is
a serjes in the slorbvalives of the normal distribution of y. Let ni{y)
represent the il derivative of the standard normal density n{y; 0, 1)
Thus

1
nly) = — = giut )
N 2w A
- 1 rQ
wily) = — W —== et = —ynoly) ¢\
" Y o A
nily) =yt — Dnoly) N\
raly) = —{y* — 3y)nely) ,\
and in genera! \

na(y) = Hily)noly) \
where Hy(y) 1+ n polynomial of degree 11in ‘leled the 7th Hermite
polynomial.  The CGram-Charlier theorqm':sxtates that under rather
general conditions f(») may be put in the form

@) = wmly) + am@i an®) +

Ll

= .
bl S g
=Y andyh
=0

i

S
m(-y\)\'\‘g a:Hi{) (4)
A, i=0

where the o are C‘)T{g}:g{lltﬁ' and ¥ = (x —-— p.)xﬂ'. It can be gshown that

H‘(y} = “\:;.\ w4
<4ﬂwgwgwyﬂ+m—n§;?@—mwh_“1 )

"\ f T H{ Hwne(yddy =0 if o 79

N\ i ifi=] )
We shall not prove these relations, By means of the second one we
may determine the coeficients a; when f(z) is known and can be
€xpressed by (4). leb equation (4) be nltiplied by H,(y) and then
Integrated on both sides with respect to @ after puttingy = (x — w/e-

We fing
f T (‘i;—*f> flz)dz = ol

119



£6.6 SPBCIAL CONTINUOUS DISTRIBUTIONS

on applying (6}, and hence that

@ = 5 f _: i, (‘" - ‘f) fz)dw @

Since the Hil(x — u)/e] ave polynomials in (z — u), the a; will be linear
functlions of the moments of » about the mean.

The Pearson curves and the Gram-Charlier series were devised Lo
meet the following practical problem: Ingeneral f{x) is unlknewn, and
all that is available iz & sample of values of 2. By meang of the
sample, the moments of f(z) cun be estimated. A DPes¥con chive
which is intended to approximate f(z) may he fitled to the .-ar-'-amf_ﬂe by
equating the sample moments to the theorctical moments afith solving
for the paramcters which appear in the theoretical moments.  These
values of Lhe parameters are then substituted in the fgrif:?tiuii to obiain
a speeific funetion which 1% meant to approximatetﬁ@r}. Himilarly,
having estimated the moments, they may be usGNDS determine a seb
of values of a; which, when substituted in (4) &lwes an approximation
to f{z); in this method only the first fow termis'dl the infinite series arc
uged. PN

Actually the process of fitting a smgo’ﬁ.h curve to a sample does not
add anything to our information aboUtf () that is not contained in the
sample.  The fitted curve may, ipifact, give one an entirely misleading
Impression of the real density funetion. However, when the sample is
quite large, it is sometimes (*.thenient to replace the data by some sort
of filted curve in order, td};impiify further computations. [usuranee
companies and cert-ain\g swvernment agencies which deal with large
masses of data find ths technique convenient,

Q.

6.6, Problems/\:.. )

1. Fll‘ld\{lld plot the cumulative form for the uniform distribution.
. 2. \’\ h{'ﬁ\ transformation will change the varate 2 to one shich
will ha\&:e"the uniform distribution over the unjt interval if

\ ) : _lz—1

flz) = 5

1 <2 <37 What interval for the new wvar
11 <5 <209

3. Plot n{z; 0, .25)

What would be the ap
(Use Table 1.)

ate corresponds to

»7@; 1, .25), and nir; 1, 9) on the sume graph-
pearance of the distribution if ¢ were very small?
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£ If 2 is normadly distributed with unit mean and ¢ = .4, find
P> 0) and 0.2 <0 a0 < 18

5. Tind the number & sueh that fora notmally distributed variate,
Plo— ko < < pt+ ko) = 95, What would & be if P = 907 99?2
Tor what valne of & i Ple > p — ko) = 957

8. Find the eencmting function £} for the moments about
the mean for a normal distribution. _

7. Find &, ju ferms ol ¢ for w novmal distribution for » even and r
odd. (Expund thie abwve generating funetion in an inlinite series.)

8 What con=iant muliiplier will change the function ¢+ into ')
density function? Whal ure the mean and the variance of the refuli-

ing distribution? O
9, Fvaluaic [I:J' e e, N
] AN 3
10. Evaluate {. T e gy .M:\V
1L Plot the gy density fore = 1,8 = 15 @5 1,8=20=2
f=1l;@="1 41, K,

12, Find the 1ised moment, pg, of the galﬁi:}c{tliStl'ibllﬁUn-

13, If in the gamma di=teibution 8 is put drual to 2 and « is put equal
t0 (n — 29,2, ihe reswiing distributio¥s called the chi-square dis-
tribution witly » degrees of Jr'i'ctzdjﬁf}‘. Find its moment generating
fametion and its mesn and vinianeg

14, Tind & such that Plr A = .05 for the chi-square distribution
with two degrees of freedondl)

16. ¥ind the #th momtut of the gaIIms distribution without using
the moment gt:r19.]‘:1"ri;r)jl;:functit)ll.

16. Find the rilPwfeiment of the gammsa digtribution using the gen-
erating fun elion P \d

17. Plot t,h‘iﬁéia density for a =0, 3 =0 a=16= 1 a=3
F=3:a fsz\S =3;a =23, 48=2 What would be the appearance
of the fungtion if both @ and 8 were large?

1&\3?1;1{13 the mean nnd varianee of the beta distribution.

Bhow that the beta density is symmetric about the point & = 14
whon o = 3 § .

a

S S | zdx
0. Find the mean of the Cauchy distribution if - f Tz —u)r

is defined 1, be

L st A _I; _ _-Iix__
e T

Show : ;
O that the distribution does not have any higher moments,
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21. Infegrate Pearson’s differential equation when ¢ and d equal
zero. What family of distributions does the result represent?

22. Bhow that any Gram-Charlier expansion must huve ay = L
oy = 0, g = 0.

23. Evaluate a4 for the Gram-Charlier expansion of f(z) =1
0 <x <1 Plotf{z) and plot

H

4
F@) = m) } alldy) oy = F ~

in order to see how the sum of first few terms of the Gm.m\'-ﬁﬂ,l\rwlicr
series begins to approximate f(x). .\

24, Compare the Cauchy density and the normak “ehaity with
¢ = 2 by plotting them on the same graph both 47ith mean zero.
Notice that the variance is a poor eriterion for compiring two distribu-
tions unless it is known that they have the sameMunetional form.

25. What are the cumulants of the normgml’,ﬁstribution?

26. Let 2 have the gamma distributign\with parameters o = 10,
8 = 1. How many moments does y =¢(N¥ have?

27. If x has the gamma distribution; find the moment generating
function of y = log . N\

28. A variate z has the densigy,

fl@) =2 \/2 e g >0
¢, &\ ‘i‘T

Find its mean and variance,

29. A variate hasusioments #; = rl. Find its moment generating
function and then'deduce its distribution,

30. A vari&ﬁé\i has the uniform distribution over the unit interval;
what functian of 2 has the gamma distribution with @ = 0, 8 = 17

31. {&,}%ate % has the beta distribution with a=08 =1 What
fu.ncti{m‘ ‘of © has the gamma distribution with o = G, 3=17

"3 : r! .
\32. A variate has moments My = /o when 7 is even and 4, = 0

whenris odd. Dedueo the distribut

ion of the variate from its moment
generating funetion,

33. Bhow how tables of the incomplete gamma function F{z; o, £)
may be used to evaluate the cumulative Poisson distribution, say, .

n

£y
5
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34, If log x ix normadly distributed with g = 1, ¢* = 4, find

Plg <z <2}
(log 2 = .693}
35. A variate r has the density

firy = 2 \E ze it x>0
Find P(z < 4.

86. Determive il mean and varlance of the normal distribution

by diffeventinting the ientity N\
=] g~\'
f_ _nlay g ot)de =1 A
: . . % N/
with respect to x nnd with respeet to al. Y

37. A varisle r i said Lo be transformed to standa.rq:}cale if 1t is
divided by its st-ondard deviation. Show that the@;mulant-s of z/e
are equal to . vy, where v, 18 the rth cumulant\ofz.

38. Show that the gamma distribution is péarly normal when « is
large, by comparing the cumulants of the two-distributions on standard
seale. “'

39. A variate » is normally distribugt 4 with mean g and variance ¢*.

Bhow that the mean of the conditi;ﬁ;él‘distribution of z, given

_ 4z < b
13 M<\
(\J n(a) — nb)
st S i 2
LR Oy ON
40~'A variute @ t‘hﬂs density f{z). How might one determine a
function wu(x) sildithat w s distributed by g(#)?
Y
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CHAPTER 7
SAMPLING

T.1. Inductive Inference. Up to now we have heen concernedd®ith
certain aspects of the theory of probability. The subject of sgripling
brings ug o the theory of statistics proper, and we ahal‘l"c.(}nsider

_briefly here one important area of the theory of statistics wad its rels-
tion to sampling, N

Progress in science is ageribed to experimentation? The research
worker petforms an experiment and obtains somedita.  On the basis
of the data certain conclusions are drawn. Rhe conclusions usually

- g0 beyond the roaterials and operations of the particular experiment.
In other words, the scientist may generatige from a particular experi-
ment to the class of all similar experipiehts. This sort of extension
from the particular to the general is\eulled inductive inference. [t 15
the way in which new knowledgew found.

Inductive inference is well Jnown to be a hazardous process, In
fact, it is a theorem of logic phat exact inductive inference is impossible.
One simply eannot, make.a, perfectly valid gencralization. However,
uncertatn inferences gatBe made, and the degree of uncertainty can
be measured if the ex&riment- has been performed in accordance with
eerfain principloss»One function of statistics is the provision of
techniques fox “mitking inductive inferences and for measuring the
degree of gnc{e;\ffainty of such inferences, U ncertainty is measured
terms of Wrobability, and that is the reason we have devoted so much
time fgithe theory of probability,

:Lg; s consider & partieular experiment, to make the above ideas

\z@p;e'what more concrete.  Suppose a nutritionist studying a vilamin
eﬁclency wishes to discovor the effect of a certain diet, JTe selects,
say, ten individuals ang gives them the diet for a number of days or
weeks.  And let us suppose that the dist plainly affected all the indi-
viduals ag reflected by some meagsurable criterion, say loss of weight of
dfacreased metabolism. The nutritionist is not interested in cc)nﬁﬂ-ing
?;S :(:ELT{?;‘:”;E;: tﬁis particular group of individuals. ITe would hkt?
o &b or al least a large proportion of all individuals

would reuct; similarly to the diet,
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INDUCIIVE INFERENCE §7.1

It is clear that no certain generalization is possible, 1t is concelv-
abls, for example, thaf the nulritionist was unfortunate enough tohave
selected individuals who happened to be physically on the downgrade
at the time, so that {he apparent rosults of the experiment were not in
tact a consequence of the diet. Or the individuals may have been
exposed to some minor malady which was not recognized. Some item
of food in the diet may have been tainted. In fact, one could list a
great mamy accidental circumstances which could have produced the
ohserved results quite independently of the diet. Whatever general-
‘zation is made must be an uncertain one. ~

To complcte the discussion, we shall consider onc very simple kihd
of inference that may be made. Let us suppose that the indigidials
were sclected from some Jarge group of individualg, say the inhabitants
of 4 county or statc. We may envisage the possibility dhat there is
gome proportion p of the individuals in the large grogpi which will be
adversely affected by the diet and tbat the refaining proportion
g=1—p will be favorably affccted or unafected by the diet. Of
course it is possible that g may be zero. 1f, the “ten individuals were
drawn at vandom (with replacement) froud the Jarge group, then the
probability that sl ten would be &d\«'{!]‘:sj(ﬂj’ affected iz p1t. Suppose
we congider a few specific values forgtd It p = 14, then p*? = Lino4.
1f in fact p is one-half for the larg& group, then the experimenter has
been most unloeky in his se]ecﬂﬁu, for then a 1 in 1024 chance has
occurred. If we ey p = 7. Age find p* = .03, which would still malke
the sample rather im nt‘ob‘s}ble. We may reasonably suppose that
p> J. In fact, we ay say, ‘Taking account of sampling fluctu-
atlons only, p is grea:ter than .7 unless a ehance with probability less
than three in oné\Bundred has occurred in the experiment.”

T.he last stafémient is an induetive inference. Somewhat more use-
ful mferuqb@jébuld be made by taking aceount of the actial measure-
ments of \shy, the losses in weight, but this simple one will illustrate
the ?({i“t's wo wish to malke here. While we say that p > .7, we admib
the‘.pﬂg‘“*ibim}’ that we may be wrong, and we give a measure, 03, of
the naximum probability that we may be inerror. By increasing the
maximum probability of error we could narrow the range for p.  Thus
We might say p > .0 unless a chance with probability less than 103
has occurred, The sizc of the probability of error is 2 matter of taste
to. a large extent. Some investigators commonly use .05 while others
wish to be move conservative and use .01 or .00L.

It is to be observed that the probability of evror measures only the
error due to random sampling fluctuations. We have not sald any-
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§7.2 SAMPLING

thing about the possible accidents that were mentioned earlier. And
in fact it is impossible to say what the probability of such aceidents
may be. The nutritionist can only say somcthing like this: *“Barring
accidents, p > .7 for the group of individuals from whicl, the ten were
selected, unless a chance with probability less than .03 hus occurred
in the experiment.”

We may mention one other point hero. Referving Lo the same
experiment, is it possible to conclude without error thit. p > 07 The
answer to this is “Yes” in theory but generally ““No’" in pragliee.
The accidents that may have occurred rule out an 1nferenegaof ‘this
kind. An experimenter willingly assumes that he perf orms Bigexperi-
ments with such eare that the probability of aceidents is egligible in
comparison with the probability of his sampling errors{ St he cannot .
assume that accidents are impossible. &

The theory of statistics thus has part in apylnductive inference
based on experimental data. TIts role s to provide a measure, in terms
of probability, of the uncertanty of the infeténce. The measure will
be based entirely on sampling errors, Itds p to the experimenter to
guard against accidents which may ifyalidate his results, and the
theory of statistics makes no attemptito deal with this aspect of the
problem of inference. N

7.2. Populations and Samples:s The word population in statisties is
used to refer to any collectiomef objects or results of operations. Thus
we may speak of the population of dairy eattle in Wise onsin, the popu-
Iation of prices of by din the City of New York, the population of
mi‘leages of automobii&ires, the hypothetical population of heads and
tails obtained by oSeIng a coin an infinite number of times, the hypo-
thetical populaties of a1 infinite number of measurements of the
veloeity of ligh't, "and so forth.

The problet of inductive inference is regarded as follows from the
point Qf:’v‘fbw of statistics: The object, of an experiment is to find out
'somze@zﬂ{ig zbout some Bpecified population. It ig impossthle or
Impracticable to examine the entire population, but one may examine
A'Part or sample of it, and on the basis of this Hmited investigation
make‘ Il?ferences regarding the whole population,

It is important that the sample be chosen from the population it is
%‘iillge?nt(igtudyi _This obvious Dﬁﬂ@iple is violated surprisingly often.
wishes to mzkl':;n?mn example mentioned above, if the nutritionist

"  inference ahoyt the population of the United States,
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one of bis classes in home economics, then he has studied a very limited
population indeed. He can make a Tigorous inference only concerning
the thirty students. Actually, of course, he would probably extend
his results to cover a larger population with considerable justification.
He could argue that the mere fact that the ten subjects happened to be
taking @ particnlar course in home economics could not concelvably
‘nfinence the experiment and that the results could certainly be taken
as representative of ail women students in the college. And from
other experiments he may assume that sex has no effect on reactigns
to diets and cluim his results apply to men students as well. Hewhay
generalize further and say the results reasonably represent all people
of college age in the region from which the college draws gt of its
students. But here he might be getiting on shaky groynd, because it
is well known that college students come from the weajlfhier and hence
better nourished families in the region. I s evensmore doubtful if
the results could be taken as representative of thawhole adult popula-
tion of the repion. And it would be comp]’et&y‘ unjustifiable to elaim
that the results arc valid for the adult population of the whole nation,
because reactions to a given diet depend 6n the normal diet, which s
quite different, in different regions, B )
Fxtengion of the population criginally gtudied to a larger population
incresses the probability of efror by an unknown amount and thus
destroys the measure of cofifidence to be placed in the inference. The
careful investigator dogg'hot indulge in this practice, but chooses his
sample from the cntire population he wishes to study if it is at all prac-
ticable. For examiple, the nutritionist, if he wishes to make an infer-
ence about thevddalt population of the nation, might sctually select,
by some deyjer or other, & random sample of individuals from the
whole adulf population and then enlist +the aid of colleagues who happen
to live.hear the individuals selected.
Wehave implied that a sample must be random. Tt is this property
< 'f’f{aéample that enables one to compute the probability of error of his
iference. The theory of probability cannot be applied to a non=
random sample, so that there is no way to measure the degree of eonfi-
dence to be placed in any inference from such a sample. The word
random refers to the manner in which the gample i8 selected rather than
to the particular sample. Any possible gample is a random sample.
Thus a person may shuffle a deck of cards thoroughly and then blindly
draw four cards from if, thus obtaining a random sample of four cards.
If, in fact, it turned out that he drew the four aces, then he obtained a
very unrepresentative sample of denominations, bub gtill it was a
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random sample by virtue of the method by which it was obtained .
Similarly, the nufritionist may have carcfully drawn a r:lfldor.rc\ sajmple
of ten adults and obtained unfavorable reactions (o his diet in all
cages. It may be, in fact, that only a sinull proportion of indi?-'idua.lg
in the population would have such a reaction and that (he Tlllt-l'{LiOUiISt-
was particularly unlueky in his sample.  The nrvgin of crror given in
his inference measures the probability of such n cont Higeney.

An investigator hopes, by druwing a rundom sumple, to get o fairly
" representative portion of the population he wishes to siudy. . Qften

it is possible to introduce a certain amount of mmr-u.-ulr;mne.ss int ‘Fhe
' sampling procedure $o obtain partial assurance ol a rrzm'{é&i&tﬁ&tlﬁ-‘e
sample. This can be done when something is lnown aboutthe popu-
lation. Thus a public-opinion agency may wish o tult™g pree]ecjmnn
poll of the United States. It knows the populatiph®of the various
states and can assurc itself a degree of representafii¥hess by allocating
its sumple to states aceording to the populatiomdf the states.  Thus,
if 1 per cent of population is in » given statd2{ per cent of the sample
will be taken in that state. Within the 5@:?%(3'1'111'1,}“‘1' alloentions may
be made. The sample may be evenlyydivided between the sexes.
The proportions of urban and ruraledrellers may he foreed Lo agree
with the actual known proportions\within the state. The effcet here
8 to divide the Population inte,a great many smaller populations.
But somewhere aleng the line random samples of the subpopulations
mll;t be taken, if inferean{fs with measurable uncertainty are to be
made,
_ 7-3. Sample Distrj,l:&ons, Suppose a varlate » hus density f(2)
' fome pupulatigaJAng suppose a sample of two values of 2, BAY Tt
and z;, are drawhat random, The pair of numbers (x1, vy) determine
& point in a}(ﬁh‘le, and the population of all such pairs of numbers that
Hught_haf@'b’em drawn forms a hivariate population,  We are inter-
estod X ﬁhding the distribution of this bivariate population in terms
of theStiginal distribution (7).
mT}he Jont density fune

1, %2), such that fop y

tion for 2, and 22 must be some function, say
DY @1, as, b3, by we have

P(al < by < bl, s < Ty < 62) = fbl fbi f(xl, xg)dx2 d.;};l (])
ND\V by 3 rarldOm
obgervation z, hag
vation. In other
pendent in the pro

Sample we shall mean that the value of the first
ho effect, whatever on the value of the second obser-
words, for a random satple, z; and @, are inde-

bability senge, When the two variates of u bivariate
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distribution are independent in the probability sense, we have seen
that the joint digtribution is the product of the marginal distributions.
In the JVprescnt instance, the marginal distributions are simply f(z1)
and f(zs), s0 that we have, by definition of randomness,

Flaa, 22) = flzfxe) (2)
or, what is the same thing,
Play < @y < by, ¢z < X2 < be) = Ploy <21 < bl (ae < ®2 < by (3)

As 1 simple example, suppose T cal have only two values, zero and
one, with probabilities ¢ and p, respectively. That is, 2 is & dis&irete
- . - - . . . € N\
varigte which has the binomial distribution £

L 3 N

R
R

fla) = (D po o=01 o0 @

\\
g N
. | 1 . )
and smce — () = [, we may write it as
0 1 ) \\:

fy = 9777 &
The joint density for samples of fwo V&Y}iéé of z 18

Fla, 2y) = pm—‘.-zeQZ—m—m "”:2’551 =0,1,22= 0,1 (5)

which iz defined at the four peiﬁtst (0, 03(0, LY, 0)(1, 1) in the @1, 22
plane. Tt iz to be observed that this density is not what we ghould
have obtained by drawihd two elements from a hinomial populat-ion
and counting the nu}ﬁh@f’ of sucoesses, say y; that density 18

’\’\f@) = (3) gt y=012 (6}
7N\ .
and it dlfi\gzr"s from (3) in that itis the digtribution of the single variate
1 + 203" Equation (5) gives us the joint distribution of the two
zandom variates @y and Te.

_\ Bt it to be noted that f(zy, 7o) gives us the distribution of the sample
in the order drawn. Thus in (&), f(0, 1) = P4 not 2pg. f(0, 1) refers
to the probability of drawing first a zero, then a one, Andin general,
(1) vepresents the probability that the frst observation drawn falls
in the interval (aq, b)) and the second falls i (a2, b2)- The opposite
oceurrence does not satisfy the specification unless, of cOUrse, the two
Intervals happen to be the samne.

By reasoning exactly as before, We find that the joink density for &
random Sample of size n, %1, T2, ° <, Ty from a popl_ﬂ&ti(}ﬂ_ with

129



874 SAMPLING

% distribution f{z) is
' floy @y« - - @) = fl@)flza) - - flz) o

and this again gives the distribution of the sample In the order drawn.
Our definition of random sampling has autematically rled oub

* sampling without veplacement from a finite population. I, for exam-
. Ple, we draw two balls from an urn containing, soy, 140 white and
three black balls, the result of the first druw certainly affects the
" probability of the result of the second. The two drwings aresaot
independent in the probability sense. In this cuse, anvther defitition
of random sampling must be adopted (Probs. 26 and 32). Oy r.present
discussion in this and in the following chapters is thus conGérned with
sampling from continuoug populations (where the qucsgi:}n of drawing
with or without replacement does not arise) and Aoytampling with

replacement from finite populations, )

74. Sample Moments. If Ty, ¥y, ¢ v, T, aledd sample of 7 values
drawn from population with density f(z), thewrth sample moment i3
defined to be A

1 n ) \ 4 3
m: —= ;L E x: 3,:;:..1’ 2’ - e (1)
i=1 Q
my :

is called the sample mean agdfis“more often designated by Z,

tion moment, P4

SUPPOS_E 9(@)NS any function of @; then the expected value of the

funetion is \V
A

V\fie:sﬁha“ll see that for 5 large sample, i, &, * -+, z, theexpression
\ }

1 3
7 D 9
=1
may be expested

ivided i t0 approximate Blg(x)]. Let the area under f(x) be

Sllgsndeeﬁ E‘}mtjv:cl)_ s}f;r}pﬁl’»l of width Ax,, and let n; be the number of sample
whe all i Ar: wrl o . ) "

the interval Aq;, T WIh ¥ = . et #; be the mid-peint of

i  Betif the Az, aro small, all the a; which fall ip Az
will not differ mych from z;, andee may v:frite S J

1%0

Elg(z)] = f_: g{x)f(2)dz (3)
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1 1
2, 0ah) 22 ) nugla) @
) b

Now the area over any Az; is approximately f{(z;)Az;, and it is the prob-
ability, say 2, that any randomly drawn value of z will fall in A,
If a sample of # values of z is drawn, we expect np; of the sample values
to fall in Aw,. It follows then that n;/n is an estimate of p;, and (4)
may be written

;15 Z g(a}) = Z %’ g(x;) O\
o Zgle)f(x) Az _ L\
This last sum approximates the integral in (3). . O
£() N

The above argument is merely heuristic and does not prove any-
thing. Tt does give & n{%..insight, however, into the way In which
samples provide inf{zr%‘ation about distributions. We can prove
directly that the expieéted value of (1/n)Zg(z:) is Elg(@)]- (We now
drop the primes fi'om the z;; they were used above to distinguish t'he
sample Vahle%\”;h%m the mid-points of the intervals.) The joint
deIlSit.y of f{'i'@"f%]., Tz, * " ", dn is

™
N

\' fler, 29, - ; Ta) = ﬁf(x‘) (5) .

i=1

<;‘3 e/
hente the expected value of the sum is

B [%Zg(xe)] = f f : f %Zg(x,-) jjl flzs) ‘12[1 dz: (6)

This integral may be written as the sum of n integrals of the forim

%f[ cu [g(:cf) H[f(xf)dxf]
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which in turn may be written as the produet of % integrals, all but one
of which are of the form

[fz)de; = 1

and the remaining one Is

. f gefe)de = - Blg(o)] @)

Hince (6) is the sura of # such integrals, we have

E [?11 > g(xf)] = Elg(x)] @)

N

AN
On choosing g(x) to be z*, we find that the expected valug Qf\h”he rth

sample moment is the rth population moment, \
n (1% 7\
E(m;) = E (; Z < Sy
= Kz} v
=i D ©

We may review the meaning of this resplt,) The sample moment )
1s & function of » random variables and fetherefore a random variable
itself. As such, it has some probability distribution, and equation
(9) shows that the mean value of-that distribution js uh.. We donot
fc-heref ore suppose that m} is in d‘ﬁy’ sense equal to x) for a given sample;
it is simply a random variaBle whose mean is 1. We shall speak of
m s being an estimate Ay, Whether or not it will be an accurate
estimate depends on howclosely the distribution of m/ is concentrated
about its mean, O :

Corresponding 0 the population moments g, about the mean, we
muy define samplé moments about. the sample mean as follows:

£ \.“ 3
\0\\“: . = i ( T
A\ T T n E %= E)
"\'" i=1
W‘ejm've ma = 0 just as ;) = 0, gince

1y _
my = EZ (-’Lg — x)
1

=?_%.Z$i-%zf
=f-—-z=0

The m, may be regarded as estima

tes of the p,. in th ze that
' . up In the sume gense
m, estimate ur; however,

they arc biased estimates. That is, it is not
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e that
E (?nr) = fr
except when 7 = 1. We shall illustrate this fact for = 21n Probs. 12
and 13.
7.5. The Law of Large Numbers. We have scen that the expected
value of 2 sample mean is the population mean.

Ez) =& (L
Let us find the variance of the sample mean \
 § N\, ¢
of = E(Z — u)? R\,
Q.
i/

1l

I ! V ’ l’*}’
E (?1 LB '“) ON

- [ D) (@‘—p)] ."C;\V

J-L&n¢ﬁr (2)

On squaring the sum, we get # terms ef the form (x; — u)? and ( )

terms of the form 2(ws — #)(%; ,y? “with 1 = 4. The expected value
of (z; — u)? depends only onsthe marginal distribution of #;, since in
the integral AN

HQ\Kx—MHMM&]

all factors not an(ﬂ}»;lng,J x: become one and we arc left mth
7 = s = o (3)
Where o 1k\t~hr\’ population variance. Similarly,

@—muwa—fua—mwnwmmﬂmm

"\ v = f {y — .’-‘)f (xa)dﬁs.[ (37: — wf (x:)dx:
\/ o | W
Bquation (2) then becomes
o = l \ Bl — u)°
i ?L..
7=1
1
=2
_ (5)
7
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Thus the variance of the sample mean is equal to the population varl-
ance divided by the sample size; this is true for any population with a
finite variance.

This fact is of extreme importance in applied statisiios. It imphies
that whatever the population distribution (provided it has a finie
variance), the distribution of the sample mean becomes more and more
concentrated near the population mean as the sample size increases.
It follows that the larger the sample, the more certain we can be that
the sample mean will be a good estimate of the population mean, (Fhis
is essentially the law of large numbers.  We shall obtain o mord pre-
cige statement of 1t below. R\,

Suppose the density of the sample mean is g(z), whery, Ait the mean
of a sample of size n from a population with density{ (%). We have

97 ?
&

AAGYR b AT YT X
AN\ Fia. 35.

found that the mﬂ&ﬂ\a{ﬂ‘fi ¥arianee of g(Z) are g and a?/n, where g and
d

¢? are the mean and wariance of f(z). It follows from the definition

of the variance thaf
y N .\ } 2 L
O v
oy == f (£ — p)g(Z)dzE {6}
\WV — &
Now Iﬁi&ﬁ" break up the range of integration into three parts, as Jlus-
tratedyh Fig. 35:
O

A [l e
A\ ) [_.,, & - wig@az 4+ | /37

- 3 = -
z Y @ — wy@an
s [ - a@e O
bl (T — u)?g(Z)dZ

W}ier'e @ 18 any arbitrarily chosen positive number. We are going 0

gﬁfeﬁsl}r;aﬁndfneql;iahty by reducing the right-hand side of equation (7)

N iscar the second mtegral, and since it is positive, the ri ght~

side will be decreased. Also in the first integral we shall replace
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THE LAW OF LARGE NUMBERS §7.5‘
the factor (£ — w)? by a%*/n. This will clearly reduce the value of
the integral, since in the range of integration

[4%:8
V1

The same substitution will reduce the third integral also. We shall
bave then

|2 — ul >

o.?. o2 H— (ao’/\/;) s a_?,o.'! [ o o

ML dax + — TydE (8
>, f_ ) g(Z)dx + — oo/ 4(Z) }\
or, what is the same thing, O\

gince the two integrals in (8) give exactly the proha"b‘fﬁfsy that Z lies
outgide the interval g — 2 Nton + (aa/.\/ﬁ_ri).
‘\/ i3 x.\\;
Now in (90 let ao/y/n = b; then 1/a* = g?}}z/rbﬂ, and (9) becomes

O
P (|:"c —ul > b)<‘ i (10)

This relation is known as Tché{;’j}éheff’s inequality. It may be
written in the alternative form.,

N\ o’ 1
P(—bé:":ig'—p<b)>1—n-—'b2 Qan
N\

Tehebyshef’s inequality gives a precise formulation of the law of
large numbers. Reférring to (11), we may choose any small numbey b
and determine a\:tmiall interval about the population mean; having
done this, we fa¥ choose n large enough 0 give a value a8 Dear one as
we please f¢hthe probability that the sample mean will hie within the
small intdrval containing the population mean. '

Togopsider an cxample, suppose some digtribution with an unknown
{“-néan has o variance equal to one. How large a sample rust be taken
in order that, the probability will be at least 95 that the sample mean
will lie within .5 of the population mean? We have ¢ = 1, b = .5,
and we wish to choose n so that 1 — o2/nb? will be .95.

Whenee
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The example is not realistic because the variance is assumed to be
* known. Eater we shall have to consider ways of circumventing this
difficulty. The important thing here is the indieation of the possi-
hility of making very accuratc and reliable inferences provided large
samples can be obtained.

7.6. The Central-limit Theorem. The central-limit theovem gives
a still more precise statement of the law of large numbers. It is the
most important theorem in statistics from both the theoretical and
applied points of view. And it is one of the most remarkable theerdng
in the whole of mathematics. A great many cminent mathematiclans
(De Moivre, Laplace, Gauss, Tchebysheff, Liapounoff, l',rJ\'y,\'(“,‘-r:}Iner,
and others) have contributed to its developmnnt The "rlmnimn is this:

If a population has a findte variance ¢* and mean u, that Wi distribu-
tion of the sample mean approaches the normal dzs!nb'u\m: with variance

o/n and mean yu as the sample size n incredses,
The astonishing thing about the theorem iz the fact that nothing is
gaid shout the form of the population diztribation function. What-
ever the distribution function, provlded only that it have a finite
varianee, the sample mean will have apfireXimately the normal distri-
bution for large samples. /The conditien that the variance be finite is
not a critieal restriction so far, as applied statistics 1s concerned,
because in almost uny pracuval‘sﬁuatlon the range of the variate will
be finite, in which case the yariance must necessarily he finte.

We shall not be able to x0ye this theorem, because it requires rather
advanced mathemati techmques IIowever in order to make
the theorem p lausible, We shall consider an argument, for the more

restricted Sltllafl().l\l V1t Wh.l(‘h the distribution has a moment. generat-

ing function. The argument will be essentially a matter of gshowing
that the monxeﬁt

generating function for the sample mean approaches
the mome}\lf g"neratmg function for the normal distribution. We
ghall ﬁrsg{] obtain the moment generating function for

~O e

\‘; ¥ = ¢’

when £ is normally digtributed.

The generating funetion is

ma(t) = L: evnia’; p', o')da’ ()
= [ ) . i e L (2)
—~a NV 2r e
and as in section 6.2 we find
ma{t) = eft* @
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THE CENTRAL-LIMIT THEOREM 87.6

Now suppose « has some arbitrary density function f{z) with mean
u and variance +* which has s moment generating function. The
moment generating function of (& — w)/o, say ma(t), is defined as

ma{t) = f:: etle—mbief () dx (4)

A sample of size # will have o mean with some distribution, say ¢(%®),
which we have seen must bave mean u and variance a?/n. The
moment generating funetion for
5 "
g/ ’\/?’L s
; O

say ms(t), 18 defined as £\
N

(Eoe
mat) = [7 g O ©
. o O
It Is our purpose to ghow that ms(t) must approalk_ph(t) when n, the
sample size, bacomes large. O
We can determine m(f) in terms of ?n-g@:\ ms(t) is the expected

value, N
E:E-lu_ . Zt’“ ‘:r;-—p;
}ﬂ," (e D'f""\r'/n) = Es(;eﬂzﬂ'/\/ﬂ)
and since we know that the j(_)i@ﬂf{:’t-ributi@n of the zy, £z, = * * , Ta 18
[T s, we may write O
i=1 )
\ PR SN .
ma(l) =~J’_m S [_m e‘/’*z ‘ H Jleddx:
& i-1
e N _t s
O =l feas:| @

N

aﬂd.h}f‘it’irtue of (4), each factor in this product is simply mz(tfﬁ);

%"hg’:e' | .
DRI

The rth derivative of ms(t/+/n) evaluated at ¢ = 0 obviously gives us
the rth moment about the mean divided by (¢ v/n)7. And we hgve
Feen in Sec. 5.3 that we may write

t 2 5
(-t oy am t el N La J__.)+---(9)
2(\/?1) 1+?W+'2102(\/£) +3!€3(~\/n - -
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and since #1 = 0, uz = ¢ this may be written

¢ _ 171 1 B3 1&4
mg(\/ﬁ)_1+ﬁ(§ﬁ+31\/}i§£ it t ) 10

If we recall that the definition of e* is

i (1 . u)“
e = lim "
s 7
- - + .\
we see that m;(f), as % becomoes infinite, becomes of exa«ily this form,

where u represents the parenthesis in (10), and when g hgdeomes
infinite, all terms in « vanish except the first, so we have O

lim ms(f) = eb 1
Rt = # .\ ?

Hence in the limit z has the same moment genefating function as ¥
and, by virtue of the statement at the end of\&c. 5.4, has the same
72\

5 n=l 15 P=INS 15 =10
t’t’. o “ ’
10 10 N 1.0 /
05 Loy 05
- AJ L
- N
- -~
0 t P ?2 x 0 ] 5 % o i 2%
{tflx > o ® ()
\f\y Fra. 36.
distributipe:” Thus in the limit the sample mesan must have the normal

distribution whatever the distribution f(z), provided that f(z) has a
mmzag‘nt generating function, or more generally, provided that f(z)
hag/a second moment. And for large n, we may say that the sample
mmean is approximately normally distributed,

The degree of approximation depends, of course, on the sample size
fmd on ‘the particular density function J{z). The approach to normal-
Ity is illustrated in Fig, 36 for the particular function f(z) = €
z > 0. The solid curves give the aetnal distributions, while the
dfﬂ.sh.cd curves give the normal approximations, (a) gives the original
dl.strll::utlon which corresponds to samples of one; (b) shows the dis-
tribution of sample means for 5 = 3; (¢} gives the distribution of
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NORMAL APCROXTMATION TO THE BINOMIAL DISTRIBUTION 87.7

sample means for % = 10. The curves rather exaggerate the approach
to normality Lecause they cannot show what happens on the tails of
the distribution.  Ordinarily distributions of sample means approach
pormality fuirly rapidly with the sample size in the region of the mean,
bt more sowly ab points distant from the mean; usually the greater
the distance of u point from the mean, the more slowly the normal
approximation approaches the actual distribution,

The eentral-limit theorem applies to discrete as well as to continuous
distributions. The moment generaling functions used in this sectidiv
conld have heeo moment generating functions for discrete distribb-
tions, and the wrgument would have been just the same exg@t‘*t\-ha,t
the integrals wonid have been replaced by sums.  We ghall inwéstigate
the nature of 1hi= approximation in the next section foN a particular
diserete digtiibirion. m\.\f

1.7. Normal Approximation to the Binomial Distribution. We

PAL

shall congider 11 densily \\“
ff\’b) — pxgl—z x —75“1 (1)
which has O
p=p ok&Pg (2)

and suppose a sample, 21, Tz, L0 , ., of size n i drawn. The
sample will simaply be a sequenceof zeros and ones in this instance, one
denoting a success; say, and(zero a failure. And

AW

™
\ .’E=}zﬂk
4 * n

_ “J
18 the proportipg\et successes in the sample. We have seen that the
ean and vartamve of T are

O\ E@) =p=0p ®3)
O o Py (4}
\ }

The distribution of # is discrete; in fact # can take on only the values

l’g"”’i"“’l

T

and we know that the density of § is

() = (;) pig—i =012 ", )
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Thus gince j = nZ, the density of 7 is

. 12 :
hz) = (?fx) P B =00 e ©)

The way in which this discrete density is approvimalod hy a con-
tinuous density funetion is illustrated in Tig. 37.

Suppose we construct reetangles of heights A{EY and widths 1/ with
mid-points of the bases at j/n, § = 0, 1,2 -+ n  The tops of

— ~
R 7 A
#(%) ! '
*_—-.J
et
i
—
b = i X
L B N e — iy X
Fig, 37. AN

these rectangles form a broken cump,’i{-*hich we may represent by ¢(&).
Bince Zh(Z) = 1, the area under gl®) will be 1/n. Tt iy clear that
p (a, <z <'~b)" f(b+%)/n @ -
- SEFE") =n G(ZIdE i
H i"*? " {a—4)/n

for any integers « ap‘d\&}b = @} in the range of 7, since the integral is

simply the area under'the tops of the rectangles over the points a to
and is thercfore &

(N b
O7 Y st a13 (Y e ®
’.:\ E=g/in R Lo jé‘a J

i&s«s}; ‘becomes large, the width of the rectangles decreases and ihe
sip;s“m the function 1g(Z) become cluser together go that it hag the
appearance, say, of the function in Fig. 38. The normal approxima-
tion to the binomial distribution may be regarded as the limiting form
of this broken curve as n becomes infinite,

This normal approximation is of particular interest because it pro-
vides a method of computing easily the approximate valuc of sums of
tf.le binomial distribution. As un illustration, et us suppose a true
die is cast and a one or a two counted as a success. Then p = 14,
140
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g =25 Forasample of 300 trials, the total number of successes, j,

has the densily
I o\ Hui—
)(‘E) J=0,1, - 300

(300N {1
- ()

Suppose we waniced {he probability that the number of successes will
not deviate frum 100 by more than 15; we should have to sum f(;)

.G X

.m’\\l"l[". a3,

Nt o .
over the range 85 (4 | I.—:)f\ very tedious caleulation,  'We can approxi-
Mate the sum by wsing.the fact that
</

B _p(B5 < I < ES)
[{o= 7 < 115) = P(SOO = 300 < 300
?I/Id sinee NS 5/300 is approximately normally distributed with mean
7 ind wiance 14 24 % 1450, we have

54 = = 115380 . -
P00 < 2 < 3130300 [ e 16, S4romar
HrEeq

e 1 e g

sies V27 V%5700
and letting ¢ — (T ~ 14)//%4700, we have
P (ﬁ‘i <5< E) fa /.1‘84 1 e it

300 — 7 T 300 ~1.ae N 2
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since

!

V%100 ' 35700
Using tables of the normal distribution, we find
P85 £ 7 < 115) =~ 934 {9)
The approximation could be slightly improved by nsing 85 — 14 and
115 + )4 in eomputing limits on the integral as indicated hy (7).
In general, for the binomial distribution, it is now evident thag

(8300 ~ 1) ~ _1.84 (113500 ~ 1%) 184

f

5 )
Pa<j<d) =y (J) pig 7w
i=a \+

IR

o1 N
et g2 i (1])
| v= S

where
o=l —p o, @FI M- gy
V'pa/n ~ Vpan
A more detailed investigation would show that the crror in this
approximsation ig less than RN
’ :.:.:15 {13)
NV npg
Prowded npg > 25, T]gug in the above example our maximum error
1s measured by 2
N s

&N I = ‘018
o) V30X 15 X 24

N \ . -
so that the approximation (9} does not quite have two-place accuracy

1n 50 far age can judge by (13). More accurate approximations are
g‘ﬁ’“@ Y Uspensky (“Introduction to Mathematical Probability,”
-fp’fyl » MeGraw-Hill Book Company, Inc., New York, 1937).
o 78" Role of the Normal Distribution in Statistics. It will be found
}fn‘ghe ensuing chapters that the normal distribution plays a very
thth ?}E;n;?]{i E:I:Jh Of course, the central-limit theorem al one cnsurei
reasons. & case, but there are other almost equally importan
resIenart:}:}lieiLﬁ\Lr E:a,ﬁla‘;‘e,lm&ny Populations encountered in the course of
degree of v e ds seem to have a normal distribution to a good
gree o _abproximation. Tt has often been argucd that this phe-
homenon 1 quite reasonable in view of the central-limit theorem. We
may consider the firing of & shop at a target as an illustration. The
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course of the projectile is affected by a great many factors all admit-
tedly with small effect.  The net deviation is the net effect of all theso
trotors.  Suppese the effect of each factor is an observation from some
population; then the total effcet is essentially the mean of a set of
ohservations [rom a sct of populations. Being of the nature of means,
the actually observed deviations might therefore be expected to be
approsimalely normally distributed. We do not intend to imply here
that most distributions encountered in practice are normal, for such
is 1ot the case b all, but nearly normal distributions are encountered
guite frequently. Q.

Another eonsideration which favors the normal distribution js, the
fact that sampling distributions based on a parent normal distibtition
are fairly mansngeable analytically. In making inferences about popu-
lations from sumples it is necessary to have the distxibutions for
various functions of the sample observations. T"h'g’\fnathematical
problem of obtaining these distributions is often eagerfor samples from
a normal population than from any other. 0O

Beeanse all these auxiliary distributions @e. tequired in statistical
inference, the economical thing to do 1s; Sbiain them for one kind of
population distribution only. When anether kind of population is
under examination, the observatioqsﬁﬁéy be transformed so that they
follow the distribution first chose’n.f * The normal distribution ig the
logical candidate for this choices Thus if a complete theory of sta-
tistieal infercnce is du\re]op"e@ Based on the normal distribution alone,
then one has in reality i‘sy‘stem which may be employed quite gen-
?rally, because other d%tributions can be transformed to the normal
orm. oo

In applying stétigtical methods based on the normal distribution,
the EXperime;LQér\i?n_ust know, at least approximately, the general form
of the distzilwtion function which his data follow. If it is normal, he
may usq the methods directly; if it is not, he may {ransform his data
50 tlgat" the transformed observations follow a normal distribution.
@t\eﬂ" the experimenter does not know the form of his population
dig tibution, then he must use other more general but usually less
Powerful methods of analysis called distribution-free methods. Some
of these methods will be presented in the final chapter of the book.

19, Problems

L L In the joint distribution p=*=¢* """, for a sample of two from a
inomial population, let &; = § — @ and find the joint distribubion
of ¥ a-nd T,
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2. Find the marginal distribution of y from the results of the above
problem, ‘

3. What is the probability that the two (Jl)Hf_‘..l'\’:Li..]t]nH of a szlmp!e
of two from a population with a rectangular distailmtion over the unit
interval will not differ by more than one-liadl?

4. What is the probability that the mean of o H.‘].ll’l])_]{‘. ‘t]f fwo Obse}"-
vations from a rvectangular distribution {over the unil interval) wil
be batween 14 and 347

5. What is the probability that the larger of {wo ]":1.11{1{)1)1 (JLJSCIM-
tions from any continuous distribution will exceed the m(-.d.mr‘u _

e If zr and g are o sample of two from a population \\"ﬁ'l';‘dbﬂﬁlty
f(x), and if the smaller of these values is denoted by ¥, n{ul\the larger
by y», what is the joint density of 3, and y,? N _

7. Gencralize the result of Prob. 6 to samples of gire n, letting g
be the smallest and y, the largest of the »n chserdtions. )

8. What iz the marginal density of the gmallest observation for
samples of size n? A _ _

9. Considering random samples of Si%‘é}ﬁ?fﬁ'om a popula.twn with
density f(x), what is the expected valug of the area under f(x) to the
left of the smullest sample observatien? _

10. Balls are drawn with replaeduient from an urn containing one
white and two black balls, Lebe = 0 for a white ball and z = 1 for
a black ball. ¥Yor Sa.mples By, ':{,3-2, -
Joint distribution of the ghs
of the observations? \‘

11. Referring to l’%b. 10, find the expected values of the sample
mean and samplesyariance.

12. For samplet’ of size two from
show that ?b\e;}f{pected val

13, QFI&MIIZ(, the resyl

*, g of size nine, what js the
abservations? The distribution of the sum

- . 2
a population with variance ¢
B . a
e of the sample variance is ¢%/2.
t of Prob. 12 to samples of size n.

1
14, What value of 5 minimizes E (z: — )27
O 1

\1$5. Itz = (i/n) 2 i, show that
1

2;(3:5 — p)? = i (z; — ) + n(E — p)?

Using this result and that of

gives a blased estimate o
16. Tlind E{ms) for

finite third moment,

Prob. 14, explain why the sample variance
f the population variance, .
samplos of size two from a population with &
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17. Show that F{(1 [ SGe — 1] = pe for samples of size # from a
populati on wilh mean g and rth moment g,

18. Use Tehebysheff's inequality to find how many times a coin
st be fossed in order that the probability will be at least .90 that
will le between o and 6. {Assume the coin is true.)

18, How conld one determine the number of tosses required in
Prob. 18 move accurately, Le., make the probability very nearly equal
to 907 What is the number of togses?

90. If o pupulation has ¢ = 2 and 7 is the mean of samples of size
100, find limits between which & — g will lic with probability .90. Ese™
both Telichysheft's inequality and the central-limit theorco. "W\hy
do the two 1esulis differ? N\

21, Buppose rp wul xp are means of two samples of sizp~;?}'from a
population with variance o Determine n so that thél\probability
will be about .01 tlat the fwvo sample means will differdyfmore than o.
(Consider the variate y = F1 — %2} \%

29, Suppose light bulbs made by a standard progess have an average
life of 2000 hours with a standard d()\-‘i&ti()l.l{fi 50 hours. And sup-
pose it is considered worth while to replage the process if the mean life
gan be inereaszed by at least 10 per cengi A engineer wishes to test a
proposed new process, and he is willing to assume that the standard
deviation of the distribution ofs lives is about the same as for the
standard process.  How larged :s'a:ﬁ:xple should he cxamine if he wishes
the probahility to be about JO1that he will fail to adopt the new process
if in fact it produces by h@ tith a mean life of 2250 hours?

23. A rescarch wm-k;rKWishes to estimate the mean of a population
using a sample Jaggd whough that the probability will be .95 that the
sample mean wilkot differ from the population mean by more than
25 per cont of4ke standard deviation. How large a sample sbould he
fake? %V

24, A‘I'f';ﬂling agency wishes to take a sample of voters in & given
stafe iﬁﬁgla enough that the probability 18 only .01 that they will find
T'he\ﬁ" oportion favoring a certain ecandidate to be less than 50 per cent
when in fact it is 52 per cent. oW large & sample should be taken?

25, A standard drug is known to be effcctive in about 80 per cent of
cases in which it iz used to freat infections. A new drug has been
found effective in 85 of the first 100 cases tried. Is the superiority
of tho new drug woll established? (If the new drug were equally
effective as the old, what would be the probability of obtaining 85 or
move suceesses in a sample of 1007)

26. A bowl contains five chips numbere

of two drawn without replacement from
146
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to be random if all possible pairs of the five chips have sn equal chanes
tobe drawn. What is the expected value of the sample mean?  What
is the variance of the sample mean?

27. Suppose the fwo chips of Prob. 26 were drawn wilh replacement,
what would be the variance of the sample mean? Why might one
guess that this variance would be larger than the one obinined before?

28. If a density f(z) hag a moment generating funution m(t), show
that the mean of samples of size » has the moment generating function
[m(t/n)T |

29, Use the result of Prob. 28 to show that the mean and vafidnce
of the sample mean are g and o%/n. O\

30. Find the third moment about the mean of the sanmypla mean for
samples of size n from a binomial population. Show th % i upproaches
zero &8 n becomes large (a8 it must if the normal app.mfxi niation is to be
valid). R4

31. Suppose the life of a certain part of a maehine is distributed by
01~ where ¢ is measured in days. Thesmiachine comes supplied
with one spare. What is the density of tﬁé'combined life of the part
and its spare? )

32, Gfaneralize Prob. 28, considerinfg»N chips and samples of size %
The variance of the sample meands
&N =7
o~ PN -1
where ¢? is the populaj;i'gi;ja\va.riance,

L\
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CHAPTER 8
POINT ESTIMATION

8.1. Estimation of Parameters. The estimation of parameters is a
primary purpuse of all scientific experimentation, and before formulatz
ing the problemn precigely, it may be worth while to consider briefly
its practical impiications. O\

Suppose a plant breeder wishes to determine the general;yielding
ability of a new hybrid line of corn in some agricultural region. " Todo
this, be selects a number of farms in the region and objdins the yiclds,
say in pounds, of small plots planted on each of several farms. He
thug ohbtains a set of observations, say 45, 27, 36,34, 59, 40, <+ v .
The average of these numbers gives & measul:eic\lf"the yielding ability.
This average is an estimate of the mean pﬂi’x\s‘éme population with a
density f(z). Of course the population needs to be carefully specified.
Were the farms selected at random? wDid the farmers cultivaie the
plot along with the rest of the crop,,jdx: did the plots have special treat-
ment? What were the weather gonditions in that season? Andsoon.
But leaving aside these quésti(ins and assuming randomness, We
regard the experiment as & drawing of & gample from & population with
density f(x) for the purp.ésé' of cstimating the mean of the distribution.

Since the observations were obtained only to the nearest.pound, the
distribution is, tndact, discrete. However, for measurements (a8
opposed to countings) it is customary to think of a continuous distribu-
tion, The\dbsetvations could have been obtained more aceurately,
but any effo t in that direction would have been wasted because the
samplingerror of the estimate would well exceed errors of rounding
to'ﬂie.\ nearest pound. In fhis connection, however, it is not always
Posstble to reduce errors of measurement well below the magnitude of
sampling errors. Thus a metallurgist studying thermal expansion of
some alloy might require a very accurate measurement of the length
of & rod and make several observations in inches, say 8.562, 8.564,
8'-563’ 8.563 - - - , with preeision equipment which can measure to
within about 001 inch. His distribution is discrete (defined at Inter-
vals of .001) and cannot be refined; this discretencss may be the major
source of the orror of his estimate.
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8§83 POINT ESTIMATION

“Tn general, the estimation problem may be sitated us follows: One
is investigating a population with a density funection f{x; t, b, + -+,
6x), where z is the variate and 6, 0, - - - , Bi e puremeters in the
distribution. Thus in the case of the gamme. distribution there ars
two parameters which we have called & and B, awd in the present nota-
tion we might cxhibit the parameters by writing the gamms density
as f(z; o, 8). On the basis of & random sample of observations, say
Ty &gy v, Ty ONE Wishes to estimale one or more of the parameters
81, 82, -+, 8. The problem here is to find functions of the abgerya-
tions which we may represent by 8, (x,, 2y, - - - b a2, o N,

* , such that the distribution of these functions will he cofieeDtrated
as closely as possible near the true values of the pa,r:mmf'-plis.\ We shall
call such functions estimators. We have alrcady scghyfor example,

that if the parameter to be estimated is the populafipn mean g, then
the function S

O )

is an cstimator for ¢ and that the distribu.t-i@\l of 2 actually does become
closely concentrated near the true mehn> for large samples when the
population variance exists. o

In speaking of the estimation .Qfsp'a.ra.meters, the moments of a dis-
tribution are usually intended™o be included by the term “param-
eters” even though thoy may not enter explicitly in the distribution
function. The momenigwill ordinarily be functions of the parameters
which do enter into & fanetional expression of the distribution, and
once those paramebers ire estimatod, vorresponding functions of those
estimates will egtitnate the moments. Of course, the moments ean
also he est-imateid\by means of the sample moments as indicated jn the
preceding c]{ébtpr

Any estimate of g paramete
sampling, “and it iy Important t
siblelsize of the error w
Studly of errors, howey
}roint estimates, i.e,, s

r is naturally subject to the errors of
o make some statement about the pos-
hen giving an estimate. Wo shall defer the
er, until a later chapter and consider here only
ngle-vulued estimates, as opposed to more gen-
ral es merely specify the parameter to be within &
given interval,

8.2, Properties of Good Estimators,

. To consider the case of a sin-
g}c parameter for simplicily, suppose

we have a random sample of
distribution f(x; ). There are

ays of choosing an estimating function (e, s, * = 1 .

em is to chooge g good one, Intuilively it is clear
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what is meant by good »__the distribution of the estimator should be
eoncentrated near the true parameter value 8. Thus if 8y, 8, 85 arc
different estimniors of 6 with densities gi(B1), ga(82), gs(fs) as llustrated

in Fig. 39, then 8. is clearly a better estimator than either f, or &5, and
i is better than #, even though it is biased to the right.

One metha of comparing two estimators is by their relative efficiency.
It an estimator §i(ey g © 7 * za) has E(f, — 6)? = 4, and if a
woond estimator fa(zy, 2, © © * 5 Tn) has E(f; — 8)* = Ay, then the
efficiency of 8, relative to 81 is defined to be A1/ As; the ratio is usually
expressed as a percentage. If the efficiency of 8. relative to 81
preater than 100 per cent, then 8, may reasonably be regarded(as a

PR

\‘ g, 39.
better estimator of 8 th@nﬁl Tt is to be noted that 4, Aaud A, will
not be the variances of. 8, and #, unless E(6,) = 6 and E{fs) =8
Several terms hgwe” come to be commonly used to describe esti-
“_1_?“301‘8, and weehall deline them now. : )
w'{_’:f}b'iasc(l. :"If~an estimator 6(zy, Tz * ° > zn) for a parameter 8 18

such that o~
E(6) = 0 (1)

thm‘s?"}s said to be unbinged. If E® > 6, the estimator is said to be
Doifively biased; while if E(@) < 6, the estimator s said to be nega-
fively biased. In constructing cstimators, it 1s obviously of some
advantage to construct an nnbiased estimator, but this is not a very
crucial requirement. If the mean of an estimator differs but little
fro.m the parameter value relative to the standard deviation of the
estimator, {he estimator may be quite saitefactory.
_ Congistent. If an estimator §xy, #2 * 7 7 s @) for u parameter &
18 such that

Pi——1 a8 N —+ (2)
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§8.2 POINT ESTIMATION

then 4 is said to.be a consistent ¢stimate of 8.  The symbolic criterion
is a way of stating that the estimate becomes near the true parameter
value with probability approaching one as the sumple size increases
without limit. The sample mean ¥ is an example of & consistent
estimator when the popu]atlon variance is finite, for T has a variance
o%/n, and as n — , the variance of Z approaches zero. Since
EEZ) = u

for any n, it follows that the distribution of Z must becorse coneen-
trated at p when ¢%/n — 0, N\

A consistent estimator is obviously unbiaged in the limit but for
finite sample sizes it may be biased though in such a way th §b-the bias
approaches zero as n becomes large. An unbiased estim&thr may or
may not be consistent depending on whether or not ats, distribution
becomes concentrated near its mean as the sampleige increases. In
estlmatmg the mean, for example, we might\define an estimator
é = z1, where z; is the first observation of the bample, this estimate is

unbiased but not consistent. - N
~Bfficient. In a great many estlmatlon\problems it is possible to
construet estimators 8y, s, - - -, 2R Such that +/n(d — 6) has »

normal digtribution with zcro mean in the limit as the sample size n
increages. Confining our atton‘umn to this class of estimators (and
agsuming such a class exists) s R wbhére may be one or more estimators
which will have a limiting Varlmcc which is smaller than the limiting
variances of the other esh{nators Thege estimators which have the
gmallest limiting var fice’ are called efficient estimators of 6.

It can be shown, fL}example that for samples drawn from a normal
population with mean u and variance o%, §; = is an cfficient estimator
of p. In fact.,a he limiting distribution of /n(Z — x) is normal with
zero meahgand variance ¢2.  No other estimator can have a smaller
limiting a%rlance However, there sro many other efficient estimators,
i.e., egiimators with the same limiting normal distribution. For
eggantble,

\ ) | . 1 n
02 =2 +1 Z %

i=1

is efficient since if can be shown that +/%(f; — ») has a normal dis-
tribution with zero mean and variance o? in the limit as n becomes
large. 1t is to be observed that 8, is biased, since

E(éz) = (n+ 1) *f‘ 1y
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VROPERTIES OF GOOD ESTIMATORS §8.2

and in general efficient estimators need not be unbiasged for finite
amples though they are clearly unbiased in the lLimit. Efficient
estimators are necessarily consistent.

“ﬁuﬁcaent An estimator 1s said to be sufficlent if # containg all the
information In the swnple vegarding the parameter. More precisely,

iy, #s, © -+, @5 0 sumple from a population with density f(z; 8)
and if 8(zy, 32, -+ -+, o) 18 an estimator such that the conditional dis-
“trbution of &, ws, - ¢ -, 2, given § does not depend on 8, then §is a

sufficlent estimator. I’ Ins means that the joint density of the sample
- may be put in the form Q.

1 ! . . '\:\
H f[\:i-a; ﬂ) = 9(31; x?.) st b xn{e)h(a; 6) N\ (3)
. i=1 % A\
where the function ¢ does not involve 6. In this form it isizle’éir that no
other function of the v can provide any informationsabout ¢. For

ct.)nsider any other function of the g, say u(z:, o\« , 2.). The
distribution of u for a fixed § will be determingd /by the conditional
density g2y, 25, - - -, x.18) and will have § Butnot @ as a parameter.

Hence u can only provide information apent 8. But & is known in
¢ 88¥ given problem, so that any informagion provided by u is of no use.

Sufficient estimuiors are obv iously the most desirable kind of esti-
ators $0 have, but unfortuns LteI} Thev do not exist except in rather
special cases. Ordine arily we ~sha]_l have to be content with less
B&tlsfactory est m:ntm 3,

We have defined \e {,oncepts in terms of one parameter, but
E}Jle extension to sever: 11 Arameters is straightforward. Thus if = is
Sstributed by fx; i 837 - -, 6, a set of estimators fy, 8, - - -, &
I8 unbiaged if, for ¢ {\ N v i

The set is C.gﬁ%ﬁ&,ent if, for every 1,

&«
&

\ Pl — 6 — 1 a5 n - ©

“hf‘}‘i # is the sample size.  The sct is sufficient if
e‘I:a]l f(:t‘.; 9 Oy - - - y Ok) = glay, 2y - 0 r:rﬂ{élx 921 T ’é}‘)
h(é;, 99, v ék, 8y, fa, * =+, 6")

thfhgmlerahzatlon of the meaning of efficient requires some knowledge

" de multivariate normal distribution, a distribution which we shall

¥ in the next chapter. If & variables i, ws, - -+ ; % have &
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§8.3 POINT ESTIMATION

multivariate normal distribution, it ean be shown that there are linear
functions Vi, Vs, - + -, Vi of the %, which are independent in the prob-
ability sense and each of which has the simple normal distri bution, so
that the multivariate normal distribution of the %; may be written
as the product of % single-variate normal distributions of the V,
(This is illustrated in Prob. 25 of Chap. 9.) A set of estimators is
efficient if v/n (6, — #) have the multivariate normal distribution in
the limit as the sample size increases, and if the lincar functions V; of
the +/n (8; — 6) which are independent in the probability sensd dre
. .such that the product of their variances is a minimum. A
*../8.3. Principle of Maximum Likelihood. To introduce thé idea, we
- 'shall consider a very simple estimation problem. SBuppbese an urn
contains & number of black and white balls, and suppése\it is known
that the ratio of the numbers is thres to one but that'¥t is not known
whether the black or the white halls are the moretimerous. That ig,
the probability of drawing a black ball is either L4 or 84, If » balls
are drawn with replacement from the urnx,’.‘)h‘-'e distribution of the
number of black balls is given by the bino'ﬁiéﬂ

fle;p) = (;2‘)'39;9“" (1}

where ¢ = 1 — p and p is the pljlaljabilit-y of drawing a black hall.

We shall draw a sample oftthree balls with replacement and attempt
to estimate the unknownparametor p of the distribulion. The esti-
mation problem is pdefictilarly simple in thig case because we have
only to choose bet\-‘.-'(;‘,;g&thc two numbers .25 and .75. T.et us anticipate
the result of the dPa%ing of the sample. The possible outcomes and
their probabilikie,s under the two possibilities are given below:

:\l.
,s\\" 2 0 1 l 2 3
B —
ou\\: 7 f(xa) _1_ _9. 2_'}' z?
\/ 4 64 | o4 | &4 | &4
f(x; D 7 |2 |y |1

54 | 64 B4 64

The principle of maximum likelihood cssentially assumes that the

sample is representative of the population. We shall state it more

precisely later. In the present example, if we found == 0 in a sample

of three, the estimate .25 for p would be preferred over .75 boecause
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PRINCIPLE OF MAXIMUM LIKELHOOD §8.3

the probability 274, is greater than 144, 1.c., because a sample with
¢ = 0 is more Likely to arise from a population with p = 14 than from
one with p = 34.  And ip peneral we should estimate p by .25 when
g =0orl,andby 75 whens = 2or3.  Theestimator may be defined

8%
pley = .25 =01 (2)
= .75 x=23
The estimator thus selects for every ® the value of p such that
flos ) > f@; p') \
¢SO\
7'\

where p' is the alternative value of p. 4

More generaily, if several alternative values of p were Rtaésjble, say
p=01, 02, 03, - -+, 1.0, we might reasonably pfogeed in the
ame manner. Thus it we found @ =6 in a samph):\(;f 25 from a
Pbinomial population, we should substitute all posgible values of p in
the expression A

\\

S\ 3

(65 p) = (‘?) PSP ®)

and choose as our estimate that valge of p which maximized f(6, p).
For the given possible vulues 0f~§9j"\\-‘.e should find our estimate 0 be
#6) = 2. If there were nolstriction on p except that 0 < p < 1,
then f(8, p) would he rogaled as a continaous function of p over the
given interval and the D@iﬁon of its maximum value would be found
by putting its del‘i\-‘:;,t;lj\"e with respeet to p equal to zero and solving
the resulting eq_ua:ti‘Qn' for p.  Thus,
A

.gﬁ\f(’({{p) - (265) pi(l — p)eB(l —») 197] @

2‘?@3“}5%&11{5 this equal to zero and golving for p, we findp =0, 1,

%5 are the roots. The first two roots arc impossible as far as the

j'giiv-en sample is concorned, and our estimate is therefore § = %s5.
his estimate has the property that

7(6; p) > T8 2" (5)

Wh,;re ?"i8 any other value of p in the nterval 0 < p < L. .
I)}le prineiple of maximum-likelihood estimation is gimply this:
. Jor, 2o, « - 2, 8) is the densily for @ random sample of sze ™
Wn from o population with an unknown parameter b then the maTt-
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mwm-likelihood estimale of ¢ is the number 8, if 1t exists, such thal
f(xl, Ly 0 :wﬂ;‘é) >f($l: 2 I 2 8’)

where 0 18 any other possible value of 9.

While we have been discussing a discrete distribution in particular,
the principle is the same for a continuous distribution. Suppose z is
continuous and has the density f(z; 8). The probability that z will lie
in a smell interval Az is approximately f(z; §)Az. Given s sample of
one cbservation, #1, we may choose arbitrarily a small interval Az
about x; and maximize the probability f(z,, §)Ar as a functida of 6.
However, since Az is arbitrary, it is not a function of # anthbehaves
&8 a constant in so far as variations in § are concerneds\ Hence in
the maximization we may disregard Az and deal only ¥ith f(z, 8).
The conclusion is obviously the same for samples+3f Tore thun one
observation. . R4

n \ 9
The funetion [] f(z;; ), which gives the \sample distribution when
o 1 ~NY;

regarded as & function of the z;, is regalgdéd;s a function of # for fixed
values of the #; in determining the ma¥imum-likelihood cstimate of 8.
When regarded as a function of 6,\the cxpression is often referred to
as the likelihood function of @, N The maximum-likelihood estimate of
8 is therefore the point at whicly the likelihood function has a maximumn,

When more than one parameter is involved, the maximum-likelihood
estimates of the paramefgrs arc defined similarly. Thus if a sample of
size » has the density ("

A\

”~‘~ Hf(z‘: 31! 923 T 1‘%)

& s =1

then the maximum-likclihood estimates of the parameters are the
numbcrﬁ}\,’ﬂg, * =+, 8, if such a set exists, which maximize the given
expresglan as a function of the ;. It often happens in practice that
one Yishes to estimate some but not all of the unknown parameters
of 4 distribution. Usually it turns out that the maximizing values
Nor the desired set of parameters depend on the remaining parameters,
so that it is necessary actually to estimato all the unknown parameters.
84. Some Mazimum-likelihood Estimators, We shall obtain in
this section maximum-likelihood estimators for parameters of some
of the common distribution functions, Ordinarily the parameters
may be regarded as continuous variables, and the maximizing value
may be obtained by putting the derivative of the likelihood function
equal to zero and solving for the parameter in the resulting equation.
164
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Since likelihood fu netions are products, and since sums are usually
more convenient 10 denl with than products, it is customary to maxi-
mize the Jogarithin of the likelihood rather than the likelihood itself,
je., to maximize
1 n
I = log 11 flzi; ) = 3, log f(as; 0) (1)
i=1 i=1
Of course the logarithm of the likelihood has its maximum at. the same
point as does the likelihood.
" Binomial. Ruppose samples of size n are drawn from the binomial ,
distribution

fleypy =pg®  =2=01 (@
The sample values. T, Tz, * ° "y Imy will be a sequence of ze;'rft&}and
ones, and the likeliiood is "‘(\.‘:
7 ' m'\’\..
l_[ pz‘gl—:s = pE:‘-qn—@x; QO (3)
. =1 '\\':
and letting y = Zu;, we have .\‘.\.
L =ylogp+ (n—yplogy (4)
dL _y 7Y 5)

ip p N¢
remembering thut ¢ = 1 — p. On putting this last expression equal
to zero and solving for p, we ﬁea the estimator
.i:\
ﬁ%i:ézxizg (6)

P n n

which is, of course, §lidobvious estimator for this parameter.

We can show tlmi‘rr%his estimator is suffieient and therefore that it
would be frui eéi?;"to search for a better estimator for the parameter.
-We need to shet that the conditional distribution of the z; given Z is
El; epen@@pzof p. Since the marginal distribution of nZ = y is given

o
\ )
(n) gy (M)
Y
*ge eonditional distribution of the z; given ¥ iz obtained by dividing
) by (7) to gEt, SE\.Y}
9(331, Ba, v v o¢ ,:cn]ﬁ) =_‘L_ x,—=0,1;2x.~=ﬂ»ﬁ (8)

()

8 digtrihe 10
Bistribution which is independent of the parameter p.
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Normal, Bamples of size  from the normal distribulion have the
density

n

1 1\
_ eleen{m—wt — f T o— {1720 S{wi—p)? (9)
's'I;[l 2r e (2"'02) :
The logarithm of the likelithood is
= —%log?«—%logaa—-%.zz(;t,',-—,u)z (10)
N
To find the Joeation of its maximum, we compute R
A\
L _ 1y AN ¥
5—#=(§Q($i—'#) O (11)
oL nl |1 RG \
T "Bt aa) W AD 4

and on putting these derivatives oqual to zero gm(’i. solving the resulting
equations for x and ¢?, we find the est-im'at;ﬁs

W

1 z Q
== NV 1
# 7 3" + (13)
¢ = i}.E’ :"(x- — E) (14)
R

which turn out to be thggsa,ﬁiple- moments corresponding to p and o*.
The estimator @ is unl{)i:}ased, but ¢2 i3 not, sinee
\\w o n— 1 .

DT Fe =t o
We shall sey 1@5&31" that this paiv of estimators is a sufficient pair for
esti ma-tingi%}\é parameters; the sample distribution for given values of
p and 38doos not involve x and o2, We note in this case that it i
possible*to estimate u without estimating 0%, but not possible to esti-
n:lz(ae a? without first eskimating u.
i\; U niform.  The density. for samples of size 7 from the uniform distri-

bution over the range « < T < 81

1
7 R (16)
g0 that ® )
L=—-nlog (8- a) a7

If we put the derivatives of this expression with respect to « and 8
equal to zero and attempt to solve for a and B, we find that af least one
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of o, § must be infinite, a nonsensical result. The trouble here is that
the likelihood docs not have zero slope at it8 maximum value, so that
we must locate its maximum by other means, It is evident from (16)
that the likelihood will be made ag large as possible when § — e is
made as small as possible.  Given & sample of n observations &1, &z

\, Tn, SUPPOSE WE denote the smallest of the obgervations by 2
and the largest by z'". (learly « can be no larger than &’ and 8 can
be no smaller {hau 2’5 henee the smallest pessible value for 8 — « 1§
" — %', The maximum-likelihood estimators are obviously

O\
& = x" (13) o
5 O
g==r e\
« N
5 somewlhat curious result because 1o use is made of the interyening
observations. O
AV
L(e)
>

& N 7
0 T15. 40,

These thre’&t\:ampies are sufficient to illustrate the application of
the metha@sf maximum likelihood. T'he last example shows thaf one
{nuslf’"ﬁé’a“-‘]}’ on the differentiation process so-locate the maximum.
rhe\ﬁlﬁcﬂ‘m L(#) may, for example, be represented by the curve i

ig. 40, wheve the actual maximum is at g, but the differentiation
Process would locate ¢ as the maximum. ~One must also remember
that the equation aL/a8 = 0 locates minima as well a8 maxima, and
hence one must wvoid using a root of the equation which actually
locmje'ﬂ a minimum.

a;‘:(; .ha\re.nQT; Mustrated the estimati on of a pa}"amet?

. actorisl in the distribution function. This may be
gven problam with the aid of tables of the derivative of ©
167

p which appears
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function. However, such a problem arises so rarely that it is not worth
while to study it here. The paramcters—n in the binomial distribu-
tion, @ in the gamma distribution, and « and 8 in the beta distribution
—arousually determined by the sample size and need not be estimated
since the sample size is ordinarily known.

8.5. Properties of Maximum-likelihood Estimators. There is no
general argument which will show that maximum-likelihood estimators
are the best possible estimators. There Is, in fact, no way of dealing
with the estimation problem (or any other problem requiringIndue-
tive inference) completely within the framewark of the thegay of prob-
ability. The theory of probability as a branch of matlfeiatics is a
deductive science—given certsin axioms, certain comclitions neces-
sarily follow. TUncertain conclusions are outside 4h& realm of the
theory. It is precisely here that statistics departé’from that theory
and becomes an independent discipline. New &3loms are required to
deal with the problems of statistics ; ome guph axiom might be the
principle of maximum likelihood. Whetlign the new axiom is good or
not frem the practical viewpoint is, of/ cbifrsc, of no infercst from the
strietly logical viewpoint. When a 1ew axiom iz added to a given seb
of axioms, a new theory involvi ng afditional theorems arises, and from
the logical viewpoint the only wequirement of the new axiom is that
it be consistent with the ot-l}ef,}ixioms.

We cannot, therefore, hape to prove that a new axiom or principle is
right or wrong. From.the practical viewpoint, we naturally want an
axiom that will giVK@ée’to & useful theory of estimation. In framing
such a principle, wneMwould first consider what he wanted the theory
to do in practieein terms of certain intuitively desirable critpria
(unbiasedness Eonsist-ency, for example) and then try to formuftffe a
principle whieh would lead to such g theory. The principle of }:glaXi‘
mum likélihood, which is due 10 R, A. Fisher, forms one bagid for a
theo;z‘o estimation. Other principles would lead to differenf theories.
A: c\}?oi’ce between principles Is, in the last analysis, a matter of opinion

(#8460 what is a good theory. After examining the properties of maxi-
n}um-lkelihuod estimates, it will become apparent that Fisher's prin-
mp']e leE.:Lds 10 a very useful theory, and that for general purposes of
eStlflflatIOD there is little if any room for improvement in the theory.

Bigs. Maximum-likelihood estimators are not, in general, unbiased,

a8 we have already seen in the case of the variance of a normal popula-
tion where

il

B = & [j—%z (z — z)ﬂ] 2=l O
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In this case the estimator could be made unbiased by multiplying 16
by n/(n — 1) t0 obtain the estimator

#rm Y - 2 @

which is an unhbiased estimator of ¢®. And in general, when maximum-
Iikelihood estimators are biased, 16 18 possible to modify them alightly
g0 that they will be anbiased.

Tf one requires his estimators to be unbiased, he is using an additional
principle which is somewhat in conflict with the principle of maximum £
likehhood. While there is no particular harm in this (aside from,a
minor logical inconsistency), there is really nothing to be gained lzy‘}t\

_The only claimn for unbinsedness as a good criterion is that it forees the
distribution of the estimator to be centered (in the centeréofgravity
senee) at the trie parameter value. But one could just;&s@ell require
the median, for example, of the distribution to be thé\frue parameter
" value. Or some other central value might be}@&d. The point is
that all one can ask is that the true paramel tyalue be gomewhere
near the center of the distribution of the estidapor. He may choose t0
dEﬁAne the center however he pleases [meaﬁ,'median, point such that
E(® — 62 is minimized], but as bqtfw’e'en reasonable definitions of
“conter” thero is not much choice, 0N

Maximum likelihood estimators'do, in fact, have the true parameter
Yalues near the conters of theizidistributi_ons ; we shall not be concerned
if the parameter does no Qé,p’pen to be at the exact center of gravity
of the distribuiion, K '

I nvarionce. A partioularty convenient property of maximum-likeli-
bood estimators is(thé fact that if 4 is the maximum-likelihood esti-
Tator for 4, al,ld;:%[‘“u(ﬂj is any single-valued function of #, then u(4)
is the maximuelikelihood estimator for u(@). This is easily seen to
be the casel ™ Let

N

N

<‘; . L(6) = illog Fai; 6)

Instead of estimating 6 we wish to estimate u(6). The function %(9)

defines an inverse function 8 = v(u). The estimator @ for % i the

value of  which maximized Llv(u)]. Since the largest value of L

;ccurs at 6 = 8, it follows that v(x) must equal §, and hence that
= u(), sinee u is the inverse function of v.

thon the basis of this argument we can conclude directly, fof‘ e)fample,
8t the maximum-likelihood estimator of the gtandard deviation of a
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normal distribution 1s
1 ot
b= VF =\ -2

Similarly since the fourth moment about the mean for a normal popu-
lation is ps = 3¢, it follows that the maximum-likelihood estimator for

pa i
A EA:RN: B E.“f._,—-QQ
ps = 3(5?) ~3[n2m n]

not the fourth sample moment, .y, about the mean as might have been
anticipated, Of course, m. could be used us un estimatop $ow w, but
an examination of the sampling distribution of g, and i, xould show
that the former has a distribution which is more clogely’ concentrated
about .. ) \ ’

In gencral, since the moments of a populatighvare ordinarily func-
tions of the paramcters that appear in theodiribution funetion, it
follows that the maximum-likelihood estimiors of the moments ure
the same functions of the cstimators «f\ the parameters, Thus the
rth moment of a population with denfity f (#; &) will be some funetion,
say 1,(8), of 0. The maximum-likelifiood estimator of the parameter
;\’ill therefore be (), whero 8 iglthe maximure likelihood estimator of

Sufficieney. Not all paraiicters have sufficient estimators, but if &
paramecter does have Egkﬁlcient cstimators, it can be shown that the
maximum-likelthood (éslimator will be a sufficient estimator. The

proof of this st-ape}n}nt is of & somewhat advanced mathematical

character and witLbe omitted.

Eﬁciency. MWhen we exarine the large-sample distribution of
max1mum~]iﬁxé1ihood estimators in a later chapter, we shall see that
uncller 'fﬁ\lﬁy general conditions the quantity /n (f — §) is asymp-
t-ot-1[:.?,}ly normally distributed with s finite varlance; furthermore 1o
U:E}:{?" asymptotically normally distributed estimator can have a smaller

,(\;anfmce. It. fqllows then that maximum-ikelihood estimators are
éficient and incidentally are consistent estimators,
1 All these properties show that the principle of maximum lkelihood
leads to a very satisfactory theory of estimation, However, perhaps
jc-he mos?; important character of the theory from a practical standpoint
is qf a d‘lf‘sercnt kind, Ttig easy enough to set up in theory a system of
estimation by speeifying certain Droperties the ostimators should have,
but to find the actual functiona] £ orms of the estimators may be a very

difficult matter. The theory of maximum likelihood does not have
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PROBLEMS 88.7

any difficulty of this kind. The estimating funetions are determined
directly by the maximization process. Thus the theory is eminently
gatisfactory on two counts: it gives estimators which have desirable
properties, and the estimators are easy to find.

8.6. Notes and References. Fisher's paper in which the principle
of maximum likelihood was first expounded is cited below. Defore
the publication of this paper, the customary method for estimating
parameters was the method of moments. If a distribution funciion
tnvolved r parameters 0y, 0z, * * 5 O this technique ealled for finding
the first » population moments as functions of the parameters:

W0 Oy - B = [ w0y 0 08 S

then equating the sample moments to these functions, and F{Ol;izing the
resulting equations for the parameters. Ina few ingtances :t?his method
gives the same eslimators ag does the maximum lil;elihaﬁa‘met-ht)d, bt
generally the estimators are different. \

Tisher was able to demonstrate that his max",ﬁ}trm-likclihood esti-
mators were usually far superior 10 thoserobtained by the older
method. Tn ihe sccond paper cited belofyyhe further showed that
maximum-likelihood estimators coulds ot be essentially improved.
Thus Fisher virtually solved the whgl'e’ﬁ)i"oblem of point estimation in
these two remarkable papers. 3"

N

WA

L B A Fisher: “On the ndathematical foundations of theoretical
statistics,” Ph@.‘losgpb{@% ransactions of the Royal Saciety, Serices
A, Vol. 222 (1922

2. R. A, Fisher: “Th\é.’(;fj' of stutistical estimation,” Proceedings of the
Cambridge Diflsophical Socicty, VoI 22 (1925).

8.7, Problems\ii\z’

C\ . . :
L. Is tliessample mean necessarily an efficient estimator of the

Populatiofitmean for every population?
2-}\1‘)@'&11 estimator is unbiased, can it be expected, for repeated
samp

Thgs, to underestimate the true parameter half the time and
overestimate it half the time?
20
3. For samples of size 20 find the efficiency of T = >'1‘ x; relative 10

. 10
fr= 1y 1 2; as cgtimators of the population mean.

1 .
4. 1 § is a sufficient cstimutor of 0 and if 4(0) is a funetiod of ¢, 18

#(8) a sufficient cstimator of #?
161
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* 5. Find the maximum-likelihood estimator for 3 given a sample of
size n from a population with f(z) = 1/8, 0 < = < 3.

6. The sample 1.3, 0.6, 1.7, 2.2, 0.3, 1.1, was drawn from a popula-
tion with the density f(z) = 1/8, 0 <z < 8. What are the max-
mum-likelihood estimates of the mean and variance of the population?

© 7. What is the maximum-likelihood estimator for & in the density
J@ ={a+ 12,0 <z < 1?

8. Assuming o known, find the maximum-likelikood estimator for
8 in the gamma distribution. N

9. Find the maximum-likelihood estimator for the pargmeter of
the Poisson distribution. PANK

10. Find the maximum-likelihood cstimator for the™variance of a
normal population, assuming the mean is known. "N

11. Find the maximum-likelihood estimator for the variance of the
gamma distribution, assuming « is known. )

12. If z is distributed by f(z) = 1/8, 0 <& < 8, and one considers
samples consisting of only one observ ‘ai‘aﬁ :'a:, then since E{x) = §/2,
& reasonable estimator for 8 might beﬁ%} = 2x. On the other hand,
the maximum-ikelthood estimatorfor 8 is f; = 2. Js therc any
choice between these two estimafors on grounds of relative cfficiency?

13. If = is normally distribuited with mean u and variance o%, find,
for samples of gize k, the maximum-likelihood estimator of the point 4
such that Lw niz; u, fgzggx = .05,

14. Tt is shown 'n@h’ap. 10 that the mean of 2 sample from a normal
Population is exa@% normally distributed. Use this fact to show that
the sample meahds & sufficient estimator of the population mean.

16. In glgl?ﬁc investigations one frequently samples from a binomial
HE) ‘—\(:S) P*™* except that observations of x = 0 are impossible,
3‘{ ﬂl};} in fact the sampling is from the conditional distribution
AN
. Yt m & h—T

Q fo = (VELZ iy,
Tind the maximum-likelih
samples of gize .

16. Find the estimator for o in the density

y M

ood estimator of p in the case m = 2 for

ca) o 2
f(x,o&):a—g(a—-x) <z <a
for samples of size 2,
1g2
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17. Referring to Prob. 16, what is the maximum-likelihood estimator
of the population mean?

18, An urn contains black and white balls. A sample of size 7
is drawn with replacement. What is the maximum-likelihood esti-
mator of the ratio 2 of black to white balls in the urn?

19. Referring to Prob. 18, suppose one draws balls one by one with
replacement until a hlack ball appears. Leb he the number of
draws required (not counting the last draw). This operation 18
repeated # times to obtain a sample T3, Tg ° ° " 5 Im What is the
maximum-likelihood estimator of & on the basig of this gample?

20, Suppose n cylindrical shafts made by a machine are selected at
random from the production of the machine and their diameters ahd
lengths measured. It is found that mu have both measutements
within the tolerance limits, niz have satisfactory lengths bub, insatis-
factory diameters, #i21 have satisfactory diameters %{ﬁ’ unsatisfac-
tory lengths, and ngy are unsatisfactory as to bothneasurements.
Iny = m. Each shaft may be regarded as 2 d@wing from a multi-
nomial population with density \\ ’

Puz“pm””’pglx“(l — P11 P12 — pzi)“?:.' :.'.B":; = 0, 1, Ex"j =1

having three parameters. What arethe m&ximum-likelihnod esti-
mates of the parameters if 711 =~QU,'?“112 = 6, na1 = 3, M2z = 1?

21. Referring to the above 'pfbbolem, suppose there is no reason to
believe that defective diamefers can in any way be related to defective
lengths. Then the dist iﬁuﬁxt}on of the s can be seb up in terms of #wo
parameters: p,, the probability of s satisfactory length, and g, the
probability of a setisfictory diameter. The density of the xy; is then

g ={pi(1l ~ G011 — poad™ (1 — PV (1 — qu™
Q& 2 =0, 1, Srg =1

Whj‘} ’@ré'the maximum-likelihood estimates for these parameters?
e $he probabilities for the four classes different under this model
from those obtained in the above problem?

2. A sample of size ni is to be drawn from a normal population

wi ) ; i
ith mean g, and variance of. A second sample of size 7z 19 to be

gl‘&wn from a normal population with mean xz and veriance o . What
s the maximum-likelihood estimator of @ = p1 pe? Asguxmng.thﬂ
hservaiions

;Otal.sﬁmple iz n = ny - ne is fixed, how should the # obseTs
© _d“*lded between the two populations in order to minmimize
variance of 4.

the
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§8.7 POINT ESTIMATION

23. Suppose intelligence quotients for students in s partieular age
group are normally distributed about a mean of 100 with standard
deviation 15. The 1.Q),, say «, of a particular student is to be esti-
mated by a test on which he seores 130, It is further given that test
scores are normally distributed about the true [.(Q). as a mean with
standard deviation 5. What is the maximum-likelihood estimate of
theﬁ;tudent’s 1.Q.7 (The answer is not 130.)

4. A sample of size 7 is drawn from each of four norinal populations,
all of which have the same variance ¢2.  The means of the £ oug hopuls-
tionsarea+b+ecat+b—~ca—b+ e,a — b — ¢ WEhavare the
maximum-likelihood estimators of @, b, ¢, and ¢27 _¥Be sample

observations may be denoted by g, = 1,23 4, and jx;= 1,2 -,
n.) N

25, Observations @y, @, = + * , %, are drawn ffdm normal popula-
tions with the same mean u but with different Wiriunces o3, o3, ' *

on I8 it possible to estimate all the pal‘mmctizrs? Assuming the o}

are known, what is the maximum-likelihfod estimator of x?
26. Is ¢, the square root of the expression on the right of equation
(5.2), an unbiased estimate of 6? N

N/
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CHAPTER 9
THE MULTIVARIATE NORMAL DISTRIBUTION

g.1. The Bivariate Normal Distribution. The bivariate normal dis-
tribution i3 & gonerulization of the normal distribution for a gingle
variate. The density has the form /

26 .0y \/] — p?

and may be represented by a beli-shaped surface 2 =‘jf(jw’,””g'/) as in
Fig. 41. Any plane parallel to the , v plane which clitethe surface

1o, ) = L G e %L:,—"*f+(%'—;“-”)f];xi.r§

x\\
z=f(g<,§Q far £k

will ,iI\JE@l!‘S‘(!'Ct it in an clliptical curve, while any plane perpendicular
t-o{h\e: ¥, y plane will cut the surface in a curve of the normal. form.
Thef probability that & point (z, y) drawn 4t random will lie In any
region R of the x, i plane is obtained by integrating the function over
tha,t I‘egiOn,

Pl(z, y) is in B] = fff(x, )y dx (2)
B

The function might, for example, represent the digtribution _of hits
90 4 vertical target (Chap. 4) where z and ¥ represent the horizontal
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§9.1 THE MULTIVARIATE NORMAL DISTRIBUTION

and vertieal deviations from the central lines. And in fact the dis-
tribution closely approximates the distribution of this as well as many
other bivariate populations encountered in practice.

We must first show that the function actually represents a distribu-
tion by showing that its integral over the whole plane is one, ie,

[o [ sy s = 1 @)

The function will, of course, be positiveif —1 < p < 1. To sir\nplify
the integral, we shall substitute \
T AN
— ~A 4

U =

Y —
Ty p i
80 that it becomes .”‘;\\‘

w o} 1 i
{1720 Bt pueten) (Jpr gy
/—nﬂf—m2'ﬂ"\/1_pz <~\

W

=

On completing the square on % in the‘exponent, we have
% = 1 ’:. 7
e 2B ) 2 U= v (fy g
f_mf_,., 2r V1 — g8
and on substituting N\
A o du
WSS — dw = ——
WV 1 —p? V1 —p?

the integral may,b}written as the product of two simple integrals,

O 1 = ]
N e~ dop
xt\"'f—w v 2 fua‘\/z—ﬂ'

o
both %(vahlfah are one, as we have seen in studying the univariate
normal distribution. Equation (3) is thus verified.

\'Ito o’t’Jta,in the moments of 2 and » , we shall find their joint moment
<\generat1ng function, say,

e dy )

mity, fa) = E(gtw-F-tsy) (6)
= [fet=ttuwf(y 1\dy dx (M
Let us again substitute for « and y in terms of % and » to obtain

mlty, &) =

gluestiag | gtiee 1
’ f f & W“’"”2;—\_71:——-—2e~[1f2(1_p=ncu=—2pm+we) dvdu (8)
—p
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THE BIVARIATE NORMAL DISTRIBUTION §9.1

The combined exponents in the integrand may be written

o [u? — Zour ¥ = 2(1 — oDt — 2(1 — p2)teoyv]
2(1 — p%

and on completing the square first on % and then on v, we find this

expression becomes

THI- ];T-’) (ot — po — (1 — ptaad? 4+ (L = p7)(0 = phos = taow)”
— (1 = p¥)(Biek + 2pbataesy + B}

which, on subsittuting

A

w— pp — (1 = p}ts )
z = v — pliwz — baoy : O3
becomes A\
—Ygw® — 1422 -+ 14(1202 + 2ptaleoegy + fgc’%)
and the integral in (8) may be written N

£ 4 '1.
m(tl, tg) = (jtlﬂs‘f'h.ﬂx.’eﬁ(f12°‘x2+2.05132¢=1’v+‘2!’v5) ‘f;\——* G-(W!KZ)—(zSﬂ) dur dz
- e’m 271—
o plierttuy b (stest 2ot waryHator®) ‘»,f; {9)
since the integral is obviously one. 087
i . . 23 = x H
The moments may be obtained by evaluating the dertvatives of

Mty fa) at t; = 0, & = 0. Thils,

)
s \‘_._' ,B_ﬂ...l = (10)
E::(}) - 651]!1@:0 o
< :
Oy =) =t ab
h ."\x:. 6i1 ht=0

ence the vat@n@’e of z is '
'L e Bt — gt =0 (12}

A B -t = B@) — e T

N

C e NN
Sm‘_ll&*l}ya/ on differentialing with respect to ts, one ﬁnlds the mean and
varidnge of i to be y, and ¢2. We can also obtain joint moments
E(xy) _

b_y differentiating m(f;, #2) » times with respect to i and s times with
respect to 45, then putting £ and 22 equal to zero. ‘The covariance of
T and y i

Blr — p)(y — po)] = Bloy — auy — Yie & et
E (:By) = H=ly

Py
167
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89.1 THE MULTIVARIATE NORMAL DISTRIBUTION

as may be verified by differentiating m(ty, {2) once with respect to each
variable, then pulting the variables equal to zero. The parameter p
is called the correlation between x and . When the correlation is zero,
it will be chserved in (1} that f(z, ¥) becomes the product of two uni-
variate normal distributions; hence in this case (p = 0), ¢ and y will
be independent in the probahility sense.

The marginal density of one of the variables, z, for example, s by
definition '

B = [ S wdy O
and again substituting e N
- ¥ — by X \\
Oy ,"f;.
and completing the square on », one finds \\ ’
» 1 _1 :i.__!‘_’.‘)? N\ (g_p L?ﬂ)’
= —_— 2 oz W 2{1—pY oz bR
fl(x) f_ « 2o, ’\/l — [ "\\« s dv
Then the substitution x\ )
v = ol — w)idd” v
W= = dy = ———
V91— pE \/‘1 — p?
shows at once that A\
- 1 fe—p=y?
fle= o7 () (15)
e Vv 2r o,

the univariate ngrﬁs}l density.  Similarly the marginal density of y
may be found té be
O 1 L fym e
A\, foly) =——= T2\ o, (16}
2 \ ny N e )

N\ T Ty

H‘]{“\Q’g t'h‘? marginal distributions, it is possible to determine the
conditional distributions. Thus the conditional density of @ for fixed
LFaltes of y is "
\ )
falyy = 150
Ja(w)

and after su_bstituting for the functions on the right, the expression
may be put in the form

1 o= ?
flaly) = 1 e ZaHl—gn [-’ﬁ—#’—‘l—,@‘“)] (17}

V2o, /1 — p?

which is a univariate normaj density with mean, g, + (or=/o,)(y — #ob
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TITE BIVARIATE NORMAL DISTRIBUTION §9.1

and with variauec, s2(1 — p%. The conditional distribution of ¥
may he obtained by interchanging z and y throughout (17) to get

S 1_ S vy 1T; y—#v—?(x—px) '
R v e A Slim-Ze-m ] (1g)
The mean value of a variate In a conditional distribution is called the
regression. funclion when regarded as a function of the fixed variates
in the conditional distribution. Thus the regression function for @ in
(17} 18 pe + (polo)(y — py), which is a linear function of » in the
present case. Tor bivariate distributions in general, the mean of £ .

.‘\‘FI(‘ 42, _
m the conditional distribu({é:n%f £ will be some funetion, say g{y), and
the Cqu_a,t.ion PN

\<& z = gy)

“_'hen plotted in, fHe =, ¥ plane gives the regression Curve for z. Itis
Simply g cul‘\;'ﬁi‘ox}hich gives the location of the mean of « for various
Vahms of Y%, \
F?r the® bivariate normal distribution, the regresgion eurve is the
Stral{'m% lne obtained by plotting
T =p;+&(?)"—#z{)

gy

(19)

a? shown in Tig. 42, The conditional density of #, [y, is also
b ?:’[[;ted in the figure for two particular values, yo and 1, of y. .
he cumulative bivariate normal distribution

F(z, y) = [jn[_”nf('s, £)dt ds
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89.2 THE MULTIVARIATE NORMAL DISTRIBUTION

may be reduced to a form involving only the parameter p by the sub-
stitution (4). Thus,

F(z, y) = Foly, v) = [ 5 \/_— AT bty

The function Fo(u, v) is tabulated for p = 0, .05, .10, - - -, 95 in
Karl Pearson’s ““Tables for Statisticians and Biometricians™ (Part I,
Cambridge University Press, London, 1914).

© 9.2, Matrices and Determinants. It iz apparent, from our study
of the bivariate normal distribution, that an investigation of the
k-variate normal distribution may invelve some very unw m\dly alge-
braie expressions. In order to simplify such cxpressi on.s, \i¥is worth

while to develop briefly the algebra of matrices. N
A matrix is any rectangular array of quantities,. ‘For gxample,
L&
3 0 logz .
= a f (?a’) \ )

is & matrix with two rows and three ccﬂhmns The matriz is nothing
more than the set of quantities; 1Oy bperation on the quantities is
implied by writing them in suchlan array. The coor dinates (z, ¥)
of & point in a plane may be regarded as a matrix |iz, y!! with one row
and two columns. A sample. of n observations {1, ¥1), (.62, Yz, t
(#n, ¥x) from & bivariatepopulation may be regarded as a matrix
O e
T2 Yo
\< '
o
&

AW s Yn
.“
?‘.’ifh'ﬂ rows and two columns,

N
%
\ )

or alternatively as a matrix

L Xy v ot Z,
Yo Y2 ot 00 ya

with two rows and  columns, The individual quantities which make
up the matrix are called elements of the matrix.

 We shall be concerned with sguare matrices, which have the samé
;:;umber of rows as columns, A general expression for a square mattix
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MATRICES AND DETERMINANTS §9.2

]au g @z 7 O
gy Oee Qa2 - 7 O
H ‘ (1)
et @wz Grs * T ]

where the elements are represented by au. The subscripts 7 and j give
the pogition of the element in the array. The first gubseript designates
the row, and the second one the column. Thus the element repre- .
sented by @s; lies in the fifth row and the seventh eclumn. The fop
row is generally tulion to be the fivst row, and the left-hand colurnnthe
first column, The order of a square matrix is its number of ¥oWws or
columns; the matrix in (1) ia of order k. The set of elemept8idiy, dz
tay * * + , @ are suid to form the main diagonal of thé matrix. A
square matrix is symmetrie if a; = a5 for all Z and 7, i,e“.,:\f the array is
mehanged when the rows and columns are int-erchqnged. Thus,

ha 0 = Lo 2
0 b ¥
A | K

is & symmetric square matrix of order three.

An algebra of matrices of the szgrﬁé ‘order may be set up by defining .
the operations of addition, subtraction, multiplication, and division.
The sum of two matrices is the matrix of the ordinary sums of corre-
sponding clements. Thu{:\‘ )

N D kY e+d bHE S 41
[ e FlNE Jm n oj=)dt+m € +n j:—i- o\ (2)
g A \% ‘.i}’? g o lg+» AEte +r

Subtraction \i"éimilarly defined. The product of two matrices is
defined as follows: The clement in the #th row and jth column of the
prn(i.yc.t’ﬁl’titrix is obtained by multiplying the elements of the #th
10w ol the 1efi-hand matrix by the corresponding clements of the qth
colurin of the right-hand matrix and adding the results. Thus, using
8 dot to indicate multiplication,

]-!a b t‘| 4 I

| I
”ﬁ e f.‘l . ‘m n o
lg h E | ‘p q x|

'\ 4 bm 4 cp ak + b+ cd al 4 bo +or
dj +em +fp dk + en + fg dl+eo+j:r @)
gj - hm + ip gk + hn + ¢4 gl + ko + o7
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£9.2 THE MULTIVARIATE NORMAL DISTUIBUTION

mutative, Division will be defined later,

We shall use the symbol |ja;]| to represent a general square matrix
of order k; i.c., layl] represents the arruy given in (1). In this nota-
tion, the definitions of addition, subtraction, and multiplication arc

lail £ [|b]] = liag £ by (4)
E
|lia"'i“|| ) “b"ﬁ.f!.{ = ” 2_:1 ai'mb'm;f O\ (5)

The wnit matrix is defined to be the matrix which hai{f omds for the
main diagonal clements and all other clements zero. . Fhus,

10 o N
0 1 0 A\
00 1 v

is the unit matrix of order three. We shal[‘}s\lise the symhol §; to repre-
sent the elcments of the unit matrix sthins 8;; 13 defined by
i =1\ Mi=j

20 ixj

a3

(6)
It is easily verified that

el cosll = llal - 1857 = [las g
The unit matrix plaﬁ;:ﬁhe same role in matrix algebra that unity does

in ordinary algebray

Certaln matries have corresponding fnverse matrices. The inverse

of a matrifdy| is a matrix, with elements which e shall denote by

a”, such #hat’

N o] - gl = 3

Thuig'the inverse of a matrix

gwith
NN

\ un te

(8)

: corresponds to the quantity 1/¢ associnted
& quantity ¢ in ordinary algebra. Division of matrices is defined
rms of the inverse matrix of the denominator. Thus,

1
gy llesl is defined to bo 4] - flas ©

The inverse Of & matrix is often indicated by putting the cxponent Tl
on the mg'tr:lx. Thus if a matrix |bg| has an inverse matrix with
elements %, that fact is usually indicated by writing

”bﬁ‘“ = [ibi;fﬁ_l
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MATRICES AND DETERMINANTS §¢.2

Since multiplication iz not commutative in general, it follows that
b+ el wilk in general be different from Nl - bt How-
ever, it can be ghown fhat a matrix is commutative with its own

inverse: _
gl ey = o] sl = 3] (10)

Our prineipal problem in_conneetion with matrices will be to find
the inverse of o given matrix. This is most easily done by means of

determinants,
The elements of & matrix may be used to form a determinant. We
may recall the properties of determinants that are of primary intereshy
here. A determinant is a particular function of a square arrayg ‘uf
dements, [y, namely, the polynomial o\

=4 g v 7 Gk "(”}‘: (11)
where the sum over 71, s, * = ° , & 1% taken over all pe;in‘mtations of
1,23, + + -,k and where the sign is plus or mingg'gecording as the
permutation (iy, 42, - + - , ) 18 an even oF odd pc{uiutatiun of 1, 2, 3,
-+, k (ie., according as the integers in (Gl - s 1) must be
interchanged an even or odd number of times’to bring them into the
order 1, 2,8, + + « , k). The function (£1)"1s usually represented by
the array in (1) except that single vexgiral bars instead of double bars
are employed. We shull use the letter "A to represent the determinant
of the elements a;;. S

= 3 4 @ulei * " " Obi (12}

The cofagior of any element ag is the determinant of order b = 1

fom{%@?@f'omitting the sth row and jih column of A multiplied by
(~0#.” We shall denote the cofactor of gz by A Thus,

@1, iz Qi G T 7 © O
g1 @z Had @3y T " T 3k
ay Gga Gaa Qi 77 G

Aoy = (—1)F

L.
|dky Oz Oks Grs - ¢ Te
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§9.2 THE MULTIVARIATE NORMAL DISTRIBTTION

Tt iz shown in the elementary theory of determinants that the value
of s determinant may be obtained by adding the products of the
elements of any row by their cofactors, i.e.,

4 =apdi + apdiz + - - -+ oawda
k
= 2 aig'Aij (13)
<1

where any valiue of ¢ may be used. By means of this result, the
problem of finding the polynomial expansion (11) of a deternginant is
reduced to the problem of expanding determinants A oi onedess order.
The determinants 44 may be further redhiced to expressisirfs:i" avolving
determinants of order k¥ — 2, and so on. Thus, alwiys expanding
on the first row, for example, the function represefited by a determi-
nant of order three may be found ns follows: w'\V

a b ¢
d fi d. e
2o gl=af J-nf] Dl
0 B b g +f:,§}“\fz
= aleld] — flrl) — b@# '~ flgl) + eldih] — elgh
= aet — afh — bdist bfg + cdh — ceg
sinee |z| = x by (11). A\ )
One other property of c}e’séi‘tninants which we shall require is
¥
zE GiAmi =0  ixm (14)
\\J’=1

If the elemcnts”of" any row are multiplied by the cofactors of the cor-
responding elerwents of any other row, the sum of the resulting products
will vanishe

We cafwow determine the inverse of a  given matrix in terms of ifs
elements: Suppose the determinant of ||a:| is ot zero,  We sball
8 p\ﬁythat the elements ¢ of the inverse of ||as]| are

PR

C \™ aif = ‘% (15}

where: A is the determinant of {la;{| and A is the cofactor of @ 10
do this, we need only show that

“ai:’“ : “aﬁ” = Haif”
By definition of a product, the clement ei, 88y, in the product is
Gy = E Xim™
m
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_ a.:mA,-m L -
&y = —_—

m
1
= Z‘ E aimAJ'm
m

From (13) it follows that the sum is equal to A when ¢ = j, and from
(14) the sum Is zero when ¢ 7 j. Hence we have at once that ¢ = 84
If the determiinant of a matrix vanishes, it is impossible to define
its inverse, and division by such matrices is not possible. This situa-
Hon is mot entirely analogous to division by zcro in ordinary algebra
beeause there :re many matrices with vanishing determinants whereas,
there is only one quantity zero in ordinary algebra. 'S\
Two properties of inverse matrices which we shall require la,@gf“é,nd )
which wec state without proof are: (1) The determil}sqnft of the -
inverse of & matrix iz equal to the reciprocal of the detemnitiant of the

N

L - . N . . . ot
original matrix. (2) If & matrix js symmetric, 1ts I¥EISe will also be **
fymmetrie. PN

~ Toillustrate the computation of an inverse matrix, we ghall find the
mverse of AV

By
llad = |2 481
IS T

3
The determinant of the matrix i§

I ’M%
1344
ol = ¢ 1
o 13
O7 14 1 2 1 2 4~
INE — 0
a° 3\1 3 1‘0 3‘+ 0 1
O Saaz-n—-6-0=2
 The cg{%ﬁ}pr’é of the clements are
\\;" 4 1
A= g =1t
2 1
Az = _‘0 3l= -6
2 4
to= -2
1 0
fizl = - \1 3\ = —3
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and so on; the complete matrix of cofactors is

1 —a 2
|4z = || —3 9 -3
1 =3 10|
On dividing each clement of this matrix by |a;| = 27 and interchang-

ing rows and columns, we have the inverse

L g ks A
||(Ia’] = HH%T /37 .....;é_?i ’\‘\.
lJ ;ﬁ? _%T lgé,?] .\ v

as may be verified by multiplying this matrix bv ﬁ’n«a ()I‘I}:,ll’lﬁ,l matrix
to chtain the unit matrix of order three, ¢

9.3. The Bivariate Norma! Distribution 111"‘]9[atr1x Notation. We
shall denote the two variates by 2; and x. mstead of 2 and y, and their
means by £, and & in place of u, and gy (To use g1 and gy for the
means might result in some con.fuslon\“ ith the moments about the
mean for a single variate.) ‘The vagiehces of &, and z; will be denoted
by 11 and ¢4 instead of a2 and»a2 " Instead of the corrclation p, we
shall use the covariance pcrxagvas thb fifth parameter and denote it by
712 OF 0. Both 51y and qa Wil be used, but it is to be remembered
that they are equal ands represent the same parameter. The matrix

(1

#8J

will be refeued to as the variance-covariance matrix or, more briefly,

as the covcmancu matrix. It is a symmetric matriz.  The determi-
nant of Q’he Imalrix is

q _ ||F11 Tz
lloss;] =

Ta1  Taz

.s'\ " losl = o112z — G120 @

}w\hieh in the earlier notation is

[7] = %0201 — p%) ®
The inverse of the matrix i |
’ Oz _ T2
ot = | Tl el @
P g g1
| Toul |7

which is symmetric since gy

. = g3, In the earlier notation the ele-
ments of the inverse are
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H 1 p
T = g8 aweg(l — pY)
"cr"‘; _ 62:( Iy 2y p
S| B ®
| owmull — p%) a2(1 — o%)
The determinant of the inverse 18
g 1
U-'-"? e —
7=
1

= = ©
Now it is to be observed in (5} that the numbers ¥ arve essentially
the cocflicients of the terms in the exponent in equation (1.1). Iy,
fact, the exponent may be written as: AN\
—le(xy — &) + oo — E)E2 — £) + o{zy — £ (@ z"}ﬁzj
+ 0:2{(932 - 52)2]

and the constant multiplier in the distribution may Bahtten as

Q

N\

VI S N
2r or Viaah
The hivariate donsity may thus be put in .ﬂ:le'form
PN
1 . —W X i (mi— gy (2 = §)
flzyzs) = 5. \/|cr"f|“e g ==l {7

The double sum in the expougiﬁ? is called a quadratic form in the vari-
ables z; — &, the ¢V are cﬁﬁl.[‘eé[ the coefficients of the quadratic form,
and o] s called the médyix of the quadratic form. .

9.4. The Multivariate Normal Distribution. The multivariate
rormal diStribllt'iilﬁ%ﬁy be thought of as the distribution of a popula-
tion of Ubj(""t&\éi\éﬁfcnts which may be characterized by geveral vari-
tbles, suy af“’:ﬁr +++ , @ Thusa population of human belngs may
be chaﬁﬁf@rf%ed by their heights (x1), weights (22), head lengihs (w5},
irm lengt’]is (z4), waist measurcments (ws), and so on. A machine

ool My produce stecl shapes which may be specified by several
1neasurements of lengths and angles. Each member of the population
flas a set of meagurements (z3, &3, * * " 5 W) 2 sample of size o drawn

rom such a population would consist of n such sets of measurements,

t_m?leﬂn%etr_ic language is often used to describe a mult-ivaEriate pop&lla—

ag ti A slven set of mensurements (&5, &2 ° " ° ,_:s;,-) is referre”to

e set of coordinates of a point in 2 k-dimensional space. The

Population consists of the points of the space. The distribution could
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be plotted in a (¢ + 1)-dimensional space, and would piot as a so-called
hypersurface consisting of the points [xy, ws, « -+, @, flry, @, -+ -,
7)), The statements are the immediate generalizolions of the case
of one- and two-variate populations. A distribution of a single variate
x, say f(z), may be plotted in a two-dimensional space and consists
of the points [z, f(z)] which lie on the curve y = f{z). A distribution
of two variates z and % may be plotied as a surface iu & three-dimen-
sional space; the points of the surface z = f(z, yj have coordinates
[£, ¥, 7(z, ¥)].

The multivariate normal density is (N
Bk NS ©
-1 3 X L“r — 55y (i — &)

ka2 =z
f(xl, Lz, = ,Ik) = (%r) \/Ecl‘_"j é i lflf’fl N (1)

in which the matrix [lo¥}} of the quadratic feranis symmetric and hasa
positive determinant. This ig the directsganieralization of the digtri-
bution given at the end of the precedi ghection. We shall see later
that the inverse of the matrix ||o%|| «Of the quadratic form i the mafrix

of variances and covariances, and thht the means of the x; are &
In order to show that o0

- PN\ 5
f— '..f“f'(xlrxﬁ"'sxk)ndxi:l
i=1
we shall integrate ou‘ﬁ\@ne of the variables, say =i, by completing the
square on that V&Qable First we ghall change the variables to
i = 20— Eb (2}

to shortery the ensuing expressions. The quadratic form becomes
Ez‘v"y.& 2> Comnpleting the square on y1, we find

k . B
2 fi Py = ot 1 Y aygs Y oy + E 5, ot
3(11’ {i=3 {fm2 = 25-‘2

oy

q»—'

&
T
_I_

o
MMa-

gl
t=2 2
n( 1 . > 1 : IR iy
=4a — 14 T 124, oMl
yl‘f'o_lerr y‘) 0_11(;0 y‘) +;Z{ ;
{ E >y Bk
= gll (y1+-— o lé ) Ligigjar Eza“y.-yf
yi) ——= oleliyy; +
‘711; ‘7112‘; 73
k E &
= i Y 1,17
ott (311 + ;ﬁz ar“ya) + E E (a*'f — Jgf:-) vy @)
2 2 2
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and on substituiing

1 .
u=3/1+;1—12 Xy 4
P R gh‘ﬂ'l’ -
g = - 0.11- 3J~?ﬁ2;3!"'sk (5)

we have
LA Ek
) 2 ey = otiyt 4 > E oy a;
L 2 2

With this reduction we can integrate out g1 The integral on fiois

S
kR N/

. o [N AT Setug
_a,f@hys»“wwfﬁyl‘:fw(%) Viete Lt ®)

/N

Ek

© 1 2 _\“i,,;u,“i.._'. 153 Efﬁy‘-y,-
- LG vEeT T

\S Bk
-1 Xty

1 (E—1)s2 1’,,.’ -
- (o) g v

@

v: - 1 .
" o A/t et gy (7)
i the o o L . |
iy en the integral is onti'i&follows from the univariate normal dis-
. s“tlmh Now let us examine the resulting function of ys, - - - ,
h SAY, RS

3

x,\ G132 ..I—’_j — 18 I giraie
g(yﬁ; ?ja\\::\‘ s Y = (-2£) 0-1 [ ¢ 23 &
O v o
Ww v\ Lo )
th}fe * andi’ are indices which run from 2 to k. Suppose we denote
igesteo ] by o} then

k
S Mg e = Big (9
m=1
:? ?nsc:ife flo¥] is symmetric so is [loyf|, and we may interchange ¢ and
) ~h§ J and m in o, without invalid@ting t-l}e relation (9). '
Pree ;’ 1 ShOfv that the inverse of 3], ¢/, 3 = 2,3, -+, &, is
Sy lowsdl, ¢/, 5 = 2,3, - - -, k, Le., on omitting the first row and

col . . o
40 of the inverse of Jlo*f, we have the inverse of Jp*?|. We need
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only show that
E
Y omem =y i, =23 -,k (10)
=2

Referring to (5),

k k "
A i'm O‘ho—lm
U"mi’ﬁ‘ S5 gmj' F — ...1_..
[+
m=2 m=2
: g N\
= 2 Tmji@" " — —7 Z C i (11
a "\ ¢
m=2 =2 2\ \

and in view of (9), the first sum on the right of (1) 1«&! — gyt
while the second sum I8 817 — 501l = —5pel! gince jshdt the range
2,3, » + +, ksothat & = 0. 'The expression (1,\1):&3 therefore
— o {(—oua NS By
80 that (10} is verified. '\’;\

The coefficient +/ |cr“| /N is A/ [d% |a“2[,‘:is may he seen as follows: o
is the cofactor of o1;in |oy| (4,5 = 3 97+« « k) divided by |og. The
cofactor is |ep| (4,5 = 2,3, - S ’., k). Since lo¥| = 1/|oyl, we have

VTS 1 1
\/{7'\ ‘\/Tla'u LY |0—1
is th\e\‘rmwrse of |j&?

1
3,434 _ g‘lj-rg"a'

and since ||ouy
cals and hence

N
27 v

, their determinants are recipro-

s N (12)
£ 11
x:\n’
We fid then that (8) is
“{\ 1 (h—11 /2 . _ o p
O e :(é;) VI e BEE e (13)

\Neo\i suppose ¥: is intograted out of (13). The preceding argument
shows that the result will be, say,
E R
-1 X T Fiy

(\&2s2
b ve = () Ve e 09

where [[§7 is the inverse of the matrix obtained by striking out the
first row and column of ||5w;| or by striking out the first two rows and
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cojurnns of o Procecding jn this manner suppose ail variables
but g have been integrated out; the resull will be, say,

} —
pye) = T/Q_:I' J\/U’U g —houws? (15)

and we know what oy i in terms of the original parameters a. ¢ols
the inverse of the rantrix oblained by striking out the first & — 1 rows
and columns of "oy, but (hislenves only one clement o i the matrix,
apd its inverse is simply /o Thus oo = 1/6e The integral of
(15) from — oo to 4= 13, uf course, one, and we have shown that (1)
does represent o density function. O\
9.5. Marginal and Conditional Distributions. The argument ipdhe:
preceding gection has supplied us, incidentally, with all the ;Qarﬁina'i
distributions associated with the multivariate normal djsﬁ'iﬁhti(;n.
The marginal density for the first » variates, £, %, * © 7 ,a},l‘s obtained
. by integrating out the remaining £ — 7 variates, and dliercsult may be

put in the form PN
rooT { &
( 1 N2 - b 2 E 5"b($ar'\é;)‘£\2:b—55)
\2}) \/i&nm‘ e a=loé=l (])

5"

‘r\-_'here the indices ¢ and b take on the taltes 1,2, - -+, 7 The coefli-
elents 58 of the gquadralie form aré~ebtained by striking out the last
k — 7 rows and columns of jloy]@nd inverting the result; L.e.,

H&“J’}'l = Iillo—af;ilx\’“' i, b= 1} 2! T (2)

1f one wighes to ObtE'lh:l'\?f.i;lf!:l'l‘ml‘gillal distribution of any other subset of
7 vanates, he may{nﬁrélv relabel thogse variates 21, 2o, * 7 70 and
uselthe above ‘oa"r;g"; or he may deline indices o, b which take on the
desired valueg\VT'hus if one wanted the marginal density of 1, To s,
be could p\,uftfit in the form

e A

P\ 34 15 3 D e — e e — B0
P ‘\/F'rb”, & @ 8 0‘,", b =1, 4, 5

Wwhere

F11 C1e e

|I|i5""’b’i| = loqr o1 Tis

G051 ot F5s |

J v y . i ) e
enI}'O“ let us tirn (o the conditional distributions. The conditional
SIty for the first, r variutes, for example, is defined by
181
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§9.5 THE MULTIVARIATE NORMAL DISTRIBUIION

fxy, 20y ¢ -, 2}
g(xf-i-l: T ﬂ:k)

where g2, * © -, Zx) 18 the marginal density of the last & —r
variates and is

1 \(k—r)/2 1 Z Zan(ep— ) (o — &)
Glrpr, © 0 v, i) = (2;) V]ere 2 (4)

@)

f(xls Tgy =07 ;xfle-l-lp e ,xk) =

wherep, g =r+1,7+2, - -,k and ~
fle=dl = ”qur“_l ‘\:\. (5)
On dividing (4.1) by (4), (3) becomes: O
—1 Ea iy 5 Fra "~\ :
2 VI o(Ze ﬁf@ (®)
211' \/Io-ﬂql )
in which we have let y; =z — & We s}i\@’let. L=k
a,b=1,2 -, r;and p, ¢ = r AW + 2, , k throughout

the remainder of this section. The dobditional densny LG) iz o clensity
for the y.; the y, are constants. We shall show that (6) is a mulli-
variate normal density for the ya and that the regression fumctions
{means of the y,) are linear fjunttlons of the y,.

The quadratic form, 3wy, may be put in the form

AN
E(b\yagb + 2 Zgﬂﬂyﬂyp + Z‘J—pqypyq {7}
ah ap e
where the ﬁrst;éufh involves the squares and products of the variates
Ya, the scco:;\d Bum involves only the first powers of the variates, and
the third'dees not involve the variates at sll. First we eliminate the
linear pern ms by substituting

ol
N

Z"\'..' ) za = ya + Cg (8)

O
N\ahd properly choosing values of the ¢,. The substitution changes (7)
to

Ebcr“*‘(z ~ o}ty — o) + 2 2 P (2, — Lo)lp + 2 P Y
L o
= %c“"z 25 — 2 E a2,05 + 2 aeacy + 2 Ea“?“za'yp —2 E o* ol

+ Z rr“?hyu (9)
P
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MARGINAL AND CONDITIONAL DISTRIBUTIONS §9.6
The second and fourth sums on the right of (9) will cancel if we put

szo"‘bcb = E TPy (10)

This is & set of + iinear equations (for ¢ = 1, 2, -, r) which will
determine the ¢'s.  We may solve them for the c's easﬂy by employing
the inverse of ', which we may denote by {[pall. On multiplying
(10) by &t and summing on a, we find

}:, TaaC"TYp = E ﬁ'aa’anbcb N\
ap ab
=3 s RAY.
B O
= {4 :‘*}‘ (11)
1 we define > :
™\
Qgp = 2 &nbgbp \ .:' (12)

then the ¢'s are the Following linear functions O{th’e Yp'

Z Otapy;ri O \g (13)

With the substitution of (8) and (11”} Jn (6) the part of the exponent
in parentheses hecomes Lhen ‘f‘,w

EL otz 2 + S‘ ety — 2 E}cpcﬂyp - E PNl — E&Nypyq (14)

o {'h ¢ ‘&? e ’

We shall show that the l\t four sums cancel out. If we substitute
for the ¢’s in (14) hom (13), the coefficient of yz¥q i the last four sums
of (14) 18, Bay, '\0

<"\_ 2 0o plihy 2 E‘Tﬂpaﬂq A= o7 — &7 (15
In the ﬁrst &um 2 and b are interchanged and Z Fpura™? substituted for

1]
“‘Jr\Ql 3accordance with (12). The first sum on the right of (15)
becomes

u - ] v,
2 O'ubﬂ‘bu’ﬂ'apaaq = E ﬁm;a-“?‘aaq
i
ao

= 2 Pt g (16)

aka

atd thus cancels half the second term of (15), leaving
dpq - Eo"’”aag + gPe — 6-10'1 (17)
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This expression is now multiplied by ¢, and summed on p after first
substituling for a., [rom (12}; we find

Zr:rpp»dw = - Zo'm'cr“”a‘@ab‘? + anrrﬁ’@ Zappaé‘ri”‘f (18)
®

B abp
— L/ (ﬁ.wr — Zo'ar._p(g““ ) Fartt + Ecr.ppfcr*"‘f — g (19)
= ZO‘G: g™ G'Qbﬂ'bq ‘{" EO"?@:O’?"? - 6,;3,

aa’h

= E Corp Sase®? -+ E OppTPE — By
a't n

= E That? E O 0T — By O
b »

|

= Ewprcr“'q — B y
£ ”‘\\'

= By — By =0 \% (20)
The 8., of (19} vanishes because ¢ and P hm\\dlﬂerpnt ranges. luqua-
tion (20} is now multiplied by §7¢ and 'ﬂﬁnmcd on p’ to show that the
dy, vanish,

We have shown, therefore, that »th(‘ quadratic form of (6) is simply

the first sum of {14): A\ 3

2, 0 = Zﬂab(ya e} + o) 21
PR\

and hence that the C%fﬁéi(ant-s of the quadvratic form in the conditional

density of the y, are the same as in the original density, Further, the

regression functighs) —e,, are lincar functions of the fixed variates ¥

9.8. The Moﬁnent Generating Function. The joint moment gener-
ating functl&i Toray, as, ¢ ¢ -, 2y s

m{y, tq% © L Ee) = E(eftm) _ (1}

N
‘, =

B2 k

\ "\ . fezem (%) \/lg_ul e BEZe o— 5 (1) l—[ d:{‘ (2)
3 —m

Let 2y — & =y To pexform the integration, we again necd to com-

plete the squares on the 's.  We shall mer ely exhibit the result and

show that it is correct. Consider the expression

;Ec"" (v — 2 omitn) (vi — Z Critn) = E E o Tyy;
- E Z ) F JJfUm 2 E Z oy jo—‘l’nlf + 2, 2‘ 2( Z ) jﬂ'ﬂngmtmt’” (3)

i jom R
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In the second tevm we shall sum first on j and use the relation

2 ooy = Bin
7

{0 obtain
E E .’.\—J O‘é?lﬂ'wf:!}sﬁn = E E Binyitﬂ
i o 7 i B

= 2 wibi

gince the sum on n of &mln = ¢, because 8, = O except when n = 4.. I\
Similarly, the third term in (3) reduces to 2yt = Syidi,  Inthe fourth
A\

term, of (3) we sum first on 7 to ohtain ~N\ 7
- M
E Y Y, niututn N
o L 4 A\ 3
, . ~\*
and then sum on 7 Lo obtain &N
hl
2 Z C’nmtmtﬂ A\
mon .‘:t\
We have finally AN

AN

Ezaif(y‘. _ E Jm.g.m)(yi — E aﬂ,-tn) = Z,:‘Ejl‘cf‘f‘:i}iyf — 2 Z‘: L

g TN :‘q’ + E E ol
[

and (2) may be put in the fm'n{{
)
W 1-{:3\}3\.:”;;'13;‘

ity 0 B = e N

® AN 2?“35;2 _ —%226*'"(1;5—thm)(w—?o»éinl .
Lo apls) Vi " [1 s

. w4 . . .
The intogral, & is clearly oue, since it 1s the integral of & multivariate
normal @Eiisit-}-' with parameters & = Somiln = Sonts Bence the
£ . . .
mﬂm‘«i&% géncrating function is
g ?n(ﬁl. . fr;) — GZ{(E;'-F'X‘}E Zaiititi (4’)

(ﬁ);lddiffcmnt-iat.ing s with respect to & and then putting all ; = 0, we

E(-’Er) = ér
&
1d the second derivatives show that
E(.TE) = ¢ T EE

E(z2s) = o T Ers
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£9.7 THE MULTIVARIATE NORMAL DISTRIGUTION

remembering that ¢, = 6. The variances and covarianeces of the z;
are therefore e and ¢y; hence the inverse of the matrix {lot]] of the
quadratic form of the multivariate normal distribution is in fact the
matrix of variances and covariances of the distribution.

As in the case of the bivariate distribution we may define correlations
pi; between x; and z; by the relations

.

i ]

o= T
T Ve \
and these correlations may he used as parameters instead ot ‘*he\;ovam«
ances. It can be shown that if |¢¥] is positive, as is reduired by the
definition of the digtribution, all the correlations must' e beiween —1
and +1. If all the correlations (or covariances), &fe zero, then the
multivariate distribution reduces to the product’éf¥e univariate normal
distributions with variances 1,¢%, \

9.7. Estimators. If random samples of s& Ty (Ttay Ty * * ° y Tha)y
=12+, n aredrawn from a k—veﬁ«late normal popn..atmn, the
Jomt densf(y of the ohservations is  \"

1 nk/2 _%EZEU H{wie—E (wjo— £7)
(2_7].) |0.u[-nf2 3_2" tf e (l)

~

and the logarithm of thg{ikelihood is

nk ¢ &N 1 )
L=—7M%E%MWW@ZZEMm~mm~@(%
NG s
To estimate/the parameters & and ¢¥, we solve the equations obtained

by puttiQ%"’the derivatives of L with respect to these parameters equal
to zerp{"\Considering first the means,

G- 3 -t 1)+;izv%cm— ) +

E ﬁl(Lm.— ‘-
i=2 o o

= > Y (@ — &) 3)

i=1

[
JIM@;«

Eol

since ¢l = ¢i1,
And in generai for ¢ we have

as, 220(%—& r=1,2 -+ k (4)
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¢ we substitute & = (1/n) Y, Tia in the last expression and equate It

to zero, we have 2 set of k egguations:

k

n Y o (& — &) =0 F=1,2 ",k (5)
g}

to be solved for the & On dividing by %, then multiplying by -,
and symming on r, we have

3 Y no(s — ) = 0
Or : > “~
Z 5"3(£|‘ — E,) = 0 ‘:} N/
or ' , y
I, — & = 0 8 = 1, 2, LR k

The estimators £: of the population means E arg:th\efefore the sample
means. ~

| 3
A

£=x = %zfﬂﬁm (6)

Qq'“

To estimate the ¢, we must differentiate L with respect to each of
these parameters. We have ¢i’= ¥, however it will be simpler to
regard o as differcnt from ¢\ "We scek the maximum of L subject to
the restrictions on the vatiables, o = o, but we chall find first the
maximum of /. withouf wbserving these restrictions. Certalnly th.e
unrestricted maximiniAvill be at least as large as the restricted maxi-

mum. We have /0
N\

8L a1 \~ 1
b 3 W’};}fa("tor of o7 — 52 (@ra — £ (®aa &)
NS p
N\
Ohon 52 (e — Bam— &) HE=D g -,k (N

On putting this expression equal to zero for ali pairs (7 s?, we have 2
Set of k2 equations to solve for the oy The solutions will obviously

tvolve é;, and we have already solved {for those in equation {6). Let
US now define

0y = }12 (ia — B}H{Tia — ) &
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§9.8 THE MULTIVARIATE NORMAL DISTRIBUTION
Then (7}, after substituting % for £, becomes

n

On equating this to zero we have

Bra = flpg rs = ]-; 2: Ty k . (9)
and if wo lot {|a¥) be the inverse of ||a;|, we have
i = g ."\(]U}

We have located the unrestricted maximum, but it turngsgut to be
cquivalent to the restricted maximum because It is obvj h%"from (&)
that a; = a;;; henece ¢ = ¢%.  Thus the same md,ximurh would have
been located had we used the restrictions ¢ = % ann‘mlly' the only
point of omitting the restrictions is that it ¢ slmpllﬁe{,xtTae differentiation
of the determinant in (2).

The maximum likelihood estimators of f\f‘ means, variances, and
covariances are therefore

A .\\
&= EETM
a 1 3.’:‘" A A
b= ) - D6~ ) oy

and the estimators of the paramecters o% are given by the inverse of ",
O e = i (12)

9.8. Problems _ X\ :
1. Show that{the contour lines for the bivariate normal density

[i.e., ecurves ior\v\ hich f(x, ¥) = constant] are ellipses.

2 Show\that any plane perpendicular to the x, ¥ planc interscets

the nor T‘surf&ce & curve of the normal form.
3. Itthe exponent of the exponential in a bivariate normal density
is —%[4(1: 12— 20z + 1)y — 2) + (¥ — 2)%, what are the means,

»&drmnces, and covariance of the variates?
\ 4. What is the moment generating function for the distribution
specified in Prob. 37

5. What is the moment gencrating function for moments about

the means for the bivariate normal distribution?

31 0 0
- . ) 2 0 0
/8. Find th ; At
Y in e inverse of the matrix 00 2 of
0 0 0 4

iss



PROBLEMS §9.8

7. Find the variances and covarisnces of normal variates which have
the quadratic form 2r2 + 28 - 4o — oae — 91,5 in their distribution.
8. What is the marginal density of z1 and z; in Prob. 77
g, What js the conditional density of & and zs in Prob. 77
10. If the matrix of Prob. 6 is the matrix o] of & normal distribu-
tion of @i, Te, T3, Lz, SHOW that the conditional distribution of 2 and 2
is the same ag the marginal distribution of z1 and z,, hence that the
pair (&, X} 13 distribuied independently of the pair {(zs, T

/11, Bhow that the determinant with k& rows and columns,

a b b - b O
b oa b - b e N
.. L0

!_b 7O B ¢

which hag «’s in the main diagonal and 0's e{e‘\r}where else, has the
value )

(o — b e + gf-;;f»ijb]

Before expanding the deterrninant,gﬁii’btract the second row from the
first, the third [rom the second, and 8o on; then add the first column to
the seeond, the second to the third, and so on.

12. Given the sample (2.5, 7.0, {£.0, 9.0), (0.4, L), (1.2, 20),
(0.2,0.0), (1.3, 3.7) from Bhormal bivariate population, find the maxi-
mum-likelihood cstinadld of the regression fanetion for the conditional
distribution of z.oN\Plot the sample observations and the regression
funetion. RS

13. Consiﬁ{{[xxiny multivariate density f(€y, T~ 7 " ,x).  One can
define -8
¢NY The means: & = Blz)

The variances: ox = BLU& — £)7
The covariances: &; = El(z: — ) — &)l
Fi

The correlations: p; = ——F—

“,r - . 4 —
N h?at is the mean and variance of any linear function ¥ =
87

Tagrs of the

U Referring to Prob. 13, what is the correlation betweell two linear

funet; )
UNCHONS iy = Ygur; and 2 = 20 (y #= ka)?
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15. What is the covariance matrix for the muliinomial distribution
{equation (3.5.2)]?
16. Referring to Prob. 13, the conditional density of the first r 2’sis
P . _f(xlsx% "'1355:)
f(xli ¥y, ] $,-[$f+1, ] 27;;) - g(-’U»M, S -'I'-k)

where g represents the marginal density of the remaining variates.
The conditional distribution has means variances and covarianees

which may be functions of the x,.1, + + + , 2 and may he denoted by
Exrer, + ¢, 2w (the regression functions) and oylzeyr, @ N, )
where now ¢,j = 1,2, - - - ,r. Show that the expected sahc of the
regression function £(x,ya, * - - , %) is the mean of x; un@&*the uneon-
ditional distribution. A\

17. Bhow that the oy(tryy, - -+, 23) of Prob, 1"6\ aré conatants for
the multivariate normal distribution. N

18. Verify the details of the sequence of equétions (5.18 to 5.20).
19. The expected values of the oy(2.11, AN ) defined in Prob., 16
are called variances and covariances abotl the regression functions and

X

are usually denoted by PN
Tig-(rg 1) ook = E{f*g}(xm.-' + 0y 2]

The partial correlation coeﬁc?}éﬁtﬁs of the cenditional distribution are
defined by N

T (r4ly - -

Fo ‘\ = ——
’ ? (\Mj o \/‘Tii'-.(r+1) SR T VERY
Find p1s.5 in term®of py, ps, ps, and p. for the multinomial distribution,
taking the nuraber of clusses to be four.

20. Wha}t\is ‘r11.2 for the bivariate normal distribution?

21. Figd'the conditional density of z, and z., given s, for the tri-
“variatg'dormal distribution, and show that the regression functions are
liqegu;’*. (Simplify the algebra by using variates yi = x; — £ The

,,,p\lg‘a,ns of 1 and y: are (015/035)ys and (Tas/ o2y,
N/ 22. Find the variances and covariances about the regression func-
tions for the conditional distribution of Prob. 21.
23. Bhow, for the trivariate normal distribution, that

P12 — pigpas

prae = (X — p3)(1 — piy)

24, Letay, xq, - + - ; @2, denote scores on 2k questions in an aptitude
test. Lef the scores be normally distributed, each with the same mean
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and variance (p and %), and such that the correlation between any
3

3
pair of questions is p > 0. My ~= E zoi1 and Yo = Eﬁzi are total
T T

geores on the odd and even questions, find the correlation between 1
and ys and show that it can be made as near unity as obe pleases by
making the test =ufficiently long.

95. Let zyos. ., ropresent the deviation of x1 from its regression
funetion in the conditional distribution of 21, given &y, Ty, © 7 7y I
Show for a trivaviate normal distribution that 25, T2, Te-21 are inde-

pendently normaadly distributed. A
98. Generalize the result of Prob. 25 to k& variates. B )
o7, Let a, wu, - ° ° , T& have the multivariate normal distribytion

and consider the conditional distribution of x4, given the qtéién T —1
variates. Let the regression function be denoted by 2; th’e{',corr’elation
between x; and z is called the multiple correlation coeficient of v on @
and is denoted by Riss...r. Show for a trivaria{ti, formal distribu-
tion that A

a1L23 = enll — R%‘s‘s’):“:
98. Referring to Prob. 27, show tha.ﬁa.’;f’a

oi123---k T 61;@’;‘;'}3“{-23-“&)

29. Show that A

1~ Rpg &l — ol (L~ ols)

30, Show that \'\”'

I-Rlge. = (1 —.p@m — a1l — plans) " - P ISP
NGO

2
O
Q

8l
N
“~

e N
O

Q
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CIIAPTER 10
SAMPLING DISTRIBUTIONS

10.1. Distributions of Functions of Random Variables. Tn order to
study further the problem of estimation, it is nceessary to hawe the
distributions of the estimators. In this section we shall Sensider
methods of obtaining such distributions, and then in the(Bmaining
sections of the chapter the methods will be employed to ¢Bbthain certain
distributions of particular interest. N\

A variate x may be transformed by some functivhybf z, say u(z}, to
define a new variate u.  We may think of the popj:tl\ation over which z
varics to be changed fo a new population Over which u wvaries. A
sample value xq, for cxample, drawn fromy$lic z population may be
interpreted as determining an observatioh.#g = w{wo) from the u popu-
lation. The density of u, sgy g(x), WWhe determined by the trans-
formation u{z) together with the dg:ﬂsit-y Flx) of =

If z is a discrete variate, the digtribution of a function u(x) is deter-
mined divectly by the laws ofiprobability. If x takes on the values
0,1,2, - - -, r, for cxampléywith probabilities £(0), f(1), « - - , f(),
then the possible values 883, say uy, uy, - - - , %, are determined by
substituting the succedsive values of z in u{z), which we shall assume
to be a single-valu gﬁ‘{hnction of z. It may be that several values of #
give rise to the g&mic value of u. The probability that « takes on a
given value, sagid, is

0 glus) = X'f(x) L

Wherezﬂ%"sum, 2, is taken over all values of z such that wlz) = %o
Thugisuppose x takes on the values 0, 1, 2, 3, 4, 5 with probabilitics
P D1, P2, T3 Py, ps; the density of 4 = (z — 2)2 s

9(0) = pa

g(1} = p1 + ps

9(4) = po + o4

g(9 = ps
and 0, 1, 4, 9 are all the possible values of «. Similarly if » is afunc-
tion of several discrete variates z;, Ty, ¢+ * ¢, xx with a joint density
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DISTRIBUTIONS OF FUNCTIONS OF RANDOM VvaRriaBLEs §10.1

flay @, 0 a1}, the probability ithat u{zy, 22, * ° * ;) takes on a
partieular one of ils values w is

Q(ui) = E’f(-rlx Eay T ,55;;) (2)

where & is taken vver all sets of values of the 2’s such that w1, T,
©L 2 = U
The basic and often the simplest method for finding distributions of

functions of continuous random variables was given in Prob. 28 of
Chap. 4. 1 = has density f(z) and u(z) is a function of &, then the

Fra. 4300
cumulative distribution of w s reéﬂﬂ}' found. Let G(u) denote the
cumulative distribution; then s

G.\(ﬂ}}.\= Plu(z) < v} - 3)
N RO ()
A wir)<u

\<&
i which the infpgral is taken over that part of the T axis where the
funetion 'u(@\:i;,s\,:léss than w. If, for example,
O

™ ulx) = £ — (3}
the,“:\:"\;' g (#) == 2 7
Y Ou) = f_{fﬁ flz)dz = F(~v/u +2) (8)

Of course the density function muy be obtained by differentiating the
cunulative distribution.

It %ill be instructive to consider another approach to this problem
of finding the distributions of functions of continuous variates.

We shall first investigate functions of a single random variate 2.
’.rD see how f(a) and u(x) determine glu), we may consider the situation
Mustrated in Fig. 43, where a particular function %(2) 18 lotted. We
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wish to determine g(u) at the point marked u on the % axis belween the
horizontal dotted lines. If we solve the equation « = u(x) for z, we
may obtain one or more values of z; thus in the figure there are three
values, i, o2, #3, Which eorrespond to the given value of . A small
interval Au about u determines corresponding intervals Az, Axs, and
Azy about the points #; which correspond to #. The funection g(u)
must be such a function that

P(u lies in Ax) = [ g(u)du )

Ay ~

where the symbolism on the right means that the integral i$to be
taken over the interval Au. We have already seen (Sec.hg) that a

value 4’ may be found in the interval such that . O
EY R ! “.( ™
[ 9600 = glu)au P ®)
Now u will lie in the interval Aw provided = g n any one of the inter-
vals Az, Azs, Azg; hence we may slate PN\

Pluin Au) = P(z in Az} + P(:B sh Axa} + Pz in Axy) (9

and since

Plzin Az = }'(x)dx = f() A, (10)
for a properly chosen value .’r::' \Mh Az;, we have
g(u')au _Eﬁ(xl)m’l + fzb)Axs + flxg)Azs (11)

From this relation 16\{‘5 clear that g(u) may be determined by dividing
through by Au and\taking the limit as Au — 0.

The curve % &mu(z) may also be represented over Az; by the squa-
tion © = ml(e{) ‘obtained by solving # = u(z) for z. Slmllar]y over
Azs the cungre may be represented by x.(%), and over Azs by 2s(¥).
From ( “we have

‘ hm () = lim [f( D5, T 5+ ‘a) ] (12)

Xnd when Au — 0 in such & way as o coﬂapse on %, all the Awx; also
approach zero so that they collapse on the corresponding x;.  The
values «’ and z; necessarily approach w and =; since the primed values
must lie w:ithm the corresponding intervals. The ratios Az;/Au, of

course, approach the derivatives of the z; when Au approaches zero.
It follows then thut

o) = f@) 22 4 fag) B 4 g
194
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DISTRIFUTIONS OF FUNCTIONS OF RANDOM varaenes  §10.1

except that one revision is required. Some of the derivatives may be
pegative; thus al in the figure u decreases with increasing = hence
dzo/du is nogailve. We are, however, interested in the positive areas
in (9), and for this reason we must change the signs of any negative
derivatives. We shall use a subseript + to indicate that a quantity
is to have its gign changed if it s negative. We shall write, therefore,

) = flo2) Gt + 1@ L 4 ) o (13)

and sinee we shall want g(x) to be a funetion of u instead of the x;, i
shall substitnte the functions 2(u) for the z; in thig relation. {)°

u O
4 N
™
N
LV
__'___——-————_'__.
‘I 2 8
D Trg. 44.

P ’ -
To illust-gette"'ihe above ideas, we may consider the variate £ with
density o\
~O° fo) = 24+ 1) —l<e<? (14)
.an}}‘;tr}a'“SfOTm ¢ Lo 1 by the relation u = 52, The function is plotied
W Fig 44, The range of u is clearly 0 < % < 4. If u < 1, there are

tW0 values of & which correspond to each value of u; wemay designate
them by

2iw) = — Vu @ <0
xg(u)=\/i1 z >0

T .
T4 > 1, there ig only one corresponding value of 3, namely,

() = Vu
195
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g10.1 . SAMPLING DISI'RIBUTIONG

We must therefore define the distribution of % in two parts. If
0 < u <1, we have by (13):

o) = 3 ea() + 1) G + 2o + Hdi;
- 2 -
=2Vt 1) \/_ + 2Vt \/a
2
v :\(16)
while if 1 < u < 4, L\
9w = 2 o) + 11 22 O

-2 (\f i D an

2\/r¢~\

The gencral procedure iz now clear, To fihc Lhc digtribution of uny
function «(z) of a random variable z, we fm& for every w, all the points
x; such that u{z;) = u, and express Lhc ¥ as funetions of u, say &:(u).
The density of » 15

9w 7}_‘;~f(m<u)) il as)

al
3

where f(z)} is the densityef 2. Often we shall deal with monotone
functions u(x), func hmfs \xhuh arc single-valued and such that z(u)
is also single-valuddf “n this case the sum in (18) would consist of
only one term, and we have

3

AN/ T dz .
Re o) = fle() g5 | (19)

for mor\fbne funetions u{z).
When 'z is a function of several random variables, the distribution
of,\ ‘ay be oblained as a marginal distribution. Supposc T, T
m«} 2/, @ have a density f(x1, 2, - - -, z;) and the denslty of u{z1, ¥z,

5 %) I8 required. We may eliminate one of the & s, say o, In
terms of u by zolving the equation

uldy, &2, - v, X)) = W
for xy to obtain a function @1(u, x4, 2, + - - , z1), or several such fune-
tions Ty (w, £2, * * -, 23} if % is not a monotone function of z;. Using

a similar argument to that used to obtain (18), we may obtain a
density .
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ary
g{'u': Ty s }3?_?.;) = ’S_;(.f(ﬁ:u(u! Lo, " st ,:I:k):, x'z} T !xk) éu—:__ (20)
and the density of u may then be found by integrating oub &, &5, © * 7

P in g, We shall illustrate this moethed in the nest section where
we ghall find the distribution of

'N.-(.Ifl_, Te, = ' ,x“) =
for samples from a normal population.

The procedure deseribed above may be generalized to determing{
{he joint digtribution of several functions wi{zy, © , T, Uel®yy © PNy

R - & A
m), -, wle, 0, A (r < k) of k random variables. Welmay
put \ o

ul(xl, - ’xk) = 11 ,,‘f Y

Tq‘.«z(,’l’f‘l, v ,&E}.;) = U2 ."’}\\ . (21)

L

and solve the rosulting set of equations fox G e, © 0 g e BO obtain
aset of ¥ functions w{ur, de, = 7 7 Un Gyt TEh OT if the solu-
tion is not unique, we may have severghpuch sets of ¢ functions. The

joint density of the w's and the repimining &'s can be shown to be

i (o)

OUji-

gluy, Ugy = 0 0y Uy Bpp1, " ';“331;) = Zﬂxl’ Lo, 7 ,:t:;—)
.i”x\
where the sum s laken Qver all sets of solutions of (21) and where
tl:.b:"} 8] is the positigealue of the determinant of the partial deriva-
tives of we(uy, - - NG, Tez, , o) with respect to the (i, § = 1,
2, -+, 7). Wa'tmil the proof of (22); 1t Js cssentially the same
8s the deriv: fan of the formulas for transforming variables in multiple
ntegrals, ’yﬁ*]}i(:h may be found in any texthook on advanced caleulus.
Dse: g M oment Generating Functions. 'There is a socond method of
deﬁmhﬁng distributions of fupctions of random variables which we
shalfind 1o be particularly vseful. 31 w(zy, €2 "7 , T is a function
of random variables ¢ which are digtributed by f(zs, £ ° 7 7 %), we
may find the moment generating funetion ot ¥
mt) = F{e)
=1{ - J‘exu(xl,n,..,,m)f(a;h Zo, T T ’xk)ndx‘, (23) .

i

;i the vesulting function of ¢ can be recognized as the moment generat-
thg fuf_lﬁ-tmn of some known distribution, then it will follow that u has
at distribution by virtue of the theorem given at the end of Chap. 3. .
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§10.2 SAMPLING DISTRIBUTIONS

This method is quite powerful in connection with certain tech-
niques of advanced mathematics (the theory of Lapluce transforms
and Fourier transforms} which cnable one to determine the distribu-
tion associated with any given moment gencrating function. The
method can also be generalized to determine the joint distzibution of
several functions of random variables,

10.2. Distribution of the Sample Mean for Normal Populations.

If samples (&, 2, * * * , 2.} of size » are drawn from a normal popula-
tion, the joint density function for the ohservations is £\
1 o K s\.
Fg, @, 0 ) =] el ol LN
i \/Er v « \/
w2 N
{1y 1 eV ILEND ol (1}
27 o" LV
and if the variates are transformed to O
PN
S
Y¥i = T ~”fz’:
Zo; ).
the density becomes N
~."~}; ) 1\*/%
Wy = () e @

in aceordance with equation (1.22) with r = & = n, since [9x:/ 0y is &
diagonal det-erminas(\\ifith elements ¢ in the main diagonal positions
and zeros elsewhore, "The value of the determinant is readily seen to
be o™, M
To find thf{distribution of §, we eliminate y, from (2) by the substi-
tution _ G
\’\ N/ n
”':’; Y1 = nff — E i = g, ya, - - - s Yr) (3)
N>y z
\?t\nd"obtai.u the density

n 3
_ 1\ ~W{tng— T+ Sl
9, vy, ys, - - - s Yn) = (5)2 ne z 2 cy

in aceordance with (1.14) since dy1/87 = n. We now wish to find the
marginal distribution of 7. The density in (4) may be regarded as &
multivariate normal distribution of &, Y3, - * -, Yn, and examination
of the exponent shows that

188



THE CHI-SQUARE DISTRIBUTION §10.3

l] nt —m —n —Hh -

t— 2 1 1 1
| —n 1 2 1 1

i = |-n 11 2 1 5
[ .
Ui—n 1 1 1 SR 2

The determinant |o77) must necessarily be n?, since in (4) it is seen that
4/l = n. We have seen in Sec. 9.5 that the marginal distributionsg
of one of & set of normally distributed variates is a normsl distribution’
with the same variance that the variate bas in the joint distribptioﬂ.

We need theretore to {ind o1y, which ig obtained by dividing the,goféctor

of & by |¢7]. The elements of the cofactor are obtaineﬁfﬁy striking

out the first row and column of (5), and the determina,nt}of’the resilt-

ing amray i easily found to be 7. Hence v

a\\/
AN
1 <7
Fil = ;Tj =n ‘\
The density of ¥ is therefore A
1 P = . .
o1 ®
(@ ‘\/’%’ 4
Hinee L o
(= )
b\ d
Wwe may transform (‘6\)]3V (T) to obtain the density of %
:’\:": "
A~ w@) = 1A miee (8}

by equationt (1.13) since dg/dZ = 1/ |

, Q{dﬁtl‘ibution (8) is the distribution approached by the distribu-
tion‘ef % for any population with finite variance as 7 becomes large, as
we have seen in Sec. 7.6. We have shown here that the distribution
8 exactly the distribution of the sample mean for normal populations

whether or not the sample size is large. . o
10.3. The Chi-square Distribution. We shall obtain the distribu-

tion of
k 2
Ko M 1
w=) (ﬂ—“ ) W
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where the z; arc normally and independently distributed with means
pi and variances ¢f.  In the joint distribution of the z; we again trans-
form the variates to

i i — Uy

-

o=

in order to simplify the equations; u is then simply 242, The method

of moment generating functions will be employed o obtain its dis-

tribution. 2N
The moment generating function of « is

N

k2 o i ¢ \\

and the multiple integral may he writlen as the p{o"dlmt of k integrals
of the form

2 o4
Vi &

The integral (3) has the valie 17~/ V2t since multiplication of the

integral by /1 — 2t makes it r(,prasent the area under s normal curve
with variance 1/{1 — 2f). It iollo“-; that

VS 1 k/2 1
m(t) = ( ) Pk @
\ 1 — Zi 2

The moment generai'\ﬁ; gfunction is of the form of the moment generat-
ing function for adgumma distribution (Scc. 6.3) with & = (£/2) — 1
and 8§ = 2, W(' may conclude therefore that the density of # 1s

L f _: o0 g, (3)

1
\f} ) I =1 ,2) Pois WAl w >0 (5}

This pﬁﬁwular form of the gamma distribution is usually referred to
; a8 ehl-qo[uare distribution with k degrees of freedom. The variate @ 15
\O;nmonly designated by the square of the greek leiter chi,
I 2
¥2 = Ti o~ g 6)
() F
hence the name for this distribution. The phrase degreee of freedom
refers to the number of independent sguares in the sum in (6); we may
think of it, howover, as merely a name for the parameter % in the
density {(3).
We may notice here that (5) gives cssentially the distribyution of the
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INDEPENDENCE OF MEAK AND VARIANCE §10.4

maximum-likelihood estimator for ¢? in normal populations when
o is known, If one considers samples of size n from a normal popuia-
Hion with known tnean u, the maximum-likelihood estimator for o* i8
found 1o be

1 a?
A — T — T =
& né(‘ p)—nu

1
where u = L [(z; — w)fo]® has the chi-square distribution with =»
degrees of freedom. The density for the estimator is therefore

1@ = 1) )1? ]!(z%) (g7)mateT 0

gince N
& N
3 R

N
dg¢? o 9

L W
This is & gamma density with a = (n/2) — 1 and 8 %’;)ag/n.

The chi-square distribution is partially tabulatediin Table I11; the
most complete tabulation is Karl Pearson’s /fDables of the Incom-
plete Gamma Funetion” (Cambridge Univoisity Press, Londen, 1922).

10.4. Independence of the Sample Mean and Variance for Normal
Populations. Ovdinarily i{he mean oﬁ.’a:~p0pulation is unknown, and
we ave rather more interested in {heisstimator (L/n}y2{E: — £)? for o
than in the estimator (1}/1;)2(:3; SOANE considered in the preceding
section. We shall now deri # the distribution of thiz estimator and
show incidentally that jteis) sstributed independently of the sample
mean. L\

N

N\

We ghall let
\ / T B
:t\w y‘- =S p (1)
\"\:s.
Nl —ngt =2 (Y u) )
2\ u ny n( y‘)
A~ 2
Q~ v=Y @~ 0 @
1
and find the joint moment generating function for % and ¥, 33Y,
My, 1) = JF(gtrattar) (4)
™
= ff . _]_ i e(s:m)(z:y.-}=+tzz(w—a)f—mv«*des
2 1

"

= ff P l_ M‘g—%ms‘l—(zmn)(Ey;)bzz-;zmrmfldei (5)
2 1
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The quadratic form may be written

E?ﬁ - % (Z y<)2 - 2322 (yi — §)*

D Rt ' S Y vl + 2 ()

(e
2({1 - iz) Ay *
—_ — o TN P .
~ - Ty (7 )
= ZZoy; ()
where 2N
a"i-——1—2£2—2(tl_tg)=a N o
7 ¢(\A
— Lo . . Z'\ ’
0-’5}' = — .Q_(M = b i ?é J % N/
n el

A determinant of order n with a’s in the main‘glié%onal and b's else-
where has the value \%

@ = byl + (n — 4P
Hence X

‘“:\;.
INFA 1
4] = [1 —op - 2o 8 20 '_“”iz)]
k12 “.’:..?'l-
. ..:;:‘2(51 -_ tz) » n—1 . ]
= (1 — 2)*1(1 — 3{1) (8)

FFrom the multiva{i{tté normal disiribution it follews that

] ..': 9, 1 Al ) 1
f‘\ F IR f (_) e~ YeZ Xetiyiys H dy‘. = e (9)
,\r‘“,"' 2x Vie¥

hence thsﬁ)iﬁegral in (5) has the value
O

.s.:.‘ it 1 15 1 (n—1}/2 10)
~O" lbs ) = (1 = 251) (1 - 2;2) (

b 3
N The fact that the joint-moment generating function factors into 2
function of #; alone and g function of £ alone implies that % and v are
independently distributed. We shall not prove this rigorously but
merely indicate the argument. Similar reasoning to that employed in
Sec. 5.4 will show that if two distributions of several variates have the
same joint-moment generating function, then the two distributions
are the same. We have a density, say f(u, ¢), with joint-moment
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INDHPENDENCE OF MEAN AND VARIANCE §10.4

generating funetion (10). Given the marginal distributions fi(u) and
folr), we may form the bivariate funetion

gu, v) = fi(w)f(v) (11)

which is clearly a density function. Furthermore its moment generat-
ing funetion must be
mity, 0)m{0, t2} {12)
where
mity, t2) = [Jerteof(u, v)du dy (13)

Since (12) and {13) arc identical by (10), it follows that g(u, v) and
f(u, v) are the same densivy and hence that f{u, v} is equal to thegprad-
uet of its marginal densities. O

The two factors of equation (10) are cach of the form of theé moment
generating funciion for a chi-square distribution; hence it follows that
wand v are each independently distributed by chi-gquare distributions,
the first having one degree of freedom, and the sedond n — 1 degrees
of freedom. The [act that v = n§® i distribdbed as chi square with
one degree of frecdom is in accord with thé}esults of Secs. 2 and 3.
For we have seen that § is normally distf:ﬂiuted with zero mean and
varianee 1/n, and from the result of See.’3 with k& = 1 it follows that

_ ‘:."." = \Z
L@ =0 N (x u) (14)

1{;’1}1"“ T

must have the chi—squareo\éﬁé}ribution with one degree of freedom.
The function N

N\

..’,,'ﬂ.‘ LiJ - 2
ML D -9 = Y "’L‘;ﬁ) (18)
22 1 1

G
has the digitibution given by equation (3.5) with % replaced by © — 1
stead Qf’}%, as would be the case if the deviations WeI¢ measured from
Fh‘?..P%)PﬁIation mean. It is sometimes said that one degree of freedom
ls\log;“by taking the sum of squares of deviations from the sample
medn rather than the population mean, OF that one degree of freedom
s used up in estimating the mean. Whilew in equation (15) is the sum
of 7 squares, the squares are not all functionaily independent. '_I‘he
telalion ¥y; = ny enables one to compute any one of the deviations
¥ = §, given the other n — 1 of them.
In ferms of » of (15), the estimator
gt = 1? {z — )t (16)
X
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§10.5 SAMPLING DISTRIBUTIONS

has the value

s
7
The density for this estimator is therefore:

] L n\UR a 2 2 2l
flg?) = = 3720 (QTrz) G2 (h—) (2 Lt 20%) (i17)

All the results of this scetion apply only to normal populations. 1t
can be proved that for no other distributions are (1) the samplénmean
and sample variance independently distributed, or (2) the sufiple mean
exactly normally distributed, or (3) the sum of squares Of deviations,
from either the population or sample mean, exactly dis}g‘ri}'juted by the
chi-square Iaw. O

10.5. The F Distribution. A distribution which Sve shall later find
to be of considerable practical interest is that’efihe ratio of two quan-
tities independently distributed by chi-sql,m\‘beflaws. Suppose » and ¢
are independently distributed by (:hi-squ;xi{:é'distributions with m and »

. degrees of freedom, respectively. Theiwjoint density is, by (3.5),

| N , e
O TR Yo T v A A A O

‘We shall find the distribut“io};:éf the quantity

e JCI ®)
‘\\"’ wn my
which is somet-iméé;referred to as the rarience ratio.  'We shall find the
density of F Dy éliminating % in terms of /¥ in {1) and then integraling
out v from the'resulting density. Sinee
G
& du _ mo @)
A\ ar n
'ﬁk{‘@émcc F' 13 & monotonic funetion of %, the joint density of # and v i8,
\éafya ’
1 .
F.om = i —
g [(m — 2)/2](n = 2) /2] 1Rtmtni i

g Iy (202
-3)(7!—“2)/2(M> e —dilod-{muFrad] E?,_’U (4)

n fl
To integrat to, w i
O mtegrate out ¢, we must evaluate the integral
f " b ) 12 Y1 () Y dy (5)
A 2 ;
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TIIE P DISTRIBUTION . §10.5

of the factors in (4) which involve n. We obscrve that the integrand
is, apart from cerlain constants, the integral of a gamma density over
ts whole range. In fact, if the integral were multiplied by

(6)

it would be exactly the area under the gamma density with

_(mtn=2)
- P
1 A
d _ e — ——= 3 { v : - the v " h
and § I+ (-mF,.fn)]’ and would have the alue one Her}gs e
value of {5) is the reciprocal of the expression (). The d@n@étﬁ*' of
is therefore AR

W) = [, o, oo |
o e a'h}[—'n— 1 el
S S —— (m)-z- p‘z—g '\1}1—2—‘23‘5(‘*?)”

ST N [n - 2\, A\
- ! A — 1 o P
( 2 )( 2 ):i"‘;\ (1+ ﬂ)
&

a function with two pahameters 1 and n.  These parameters are also
called degrees of fro figm,; thus (7) is called the F density with m and 7
#eg?‘egs of freedomidthe number of degrees of freedom of the variate %
in the numer T,(}Iof F s always quot.ed first.

‘Five poinlon the upper tail of the curnulative distribution of ¥ arc
given inMTable V. More complete tables may be found in the refer-
e.neex;fitﬁd i the footnote to Table ¥ and in Tisher and Yates, “Sta-
tl‘ssc}'eal Tables” (Oliver & Boyd, 1td., Edinburgh and London, 1938)-
The reciprocals of the numbers in Table V provide five pointg on the
1.0“-'61‘ tail of the eumulative distribution. To evaluate In general an
ntegral of the form

h m ’{")t 1 :___2 1 1_2-__??: 2 | "‘;}: @
(2 ()
m I n - 2)1 ‘,'.r:;‘ﬁz:—z
-5 — ! m ST _
< (”j)a N ,_'_‘T'___—— F>0 (7}
Ty,

Pla<F <b) = [ w0

One may transform the distribution to the beta distribution and use

Karl Pearson’s ““ Tables of the Incomplete Beta Tanction” (Cambridge
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§10.6 SAMPLING DISTRIBUTIONS

University Press, London, 1932). The required transformation is

_ mi'/n
14 (mF/n)

which changes (7) to a beta density with parameters & = (m — 2)/2
and g = (n — 2)/2.

_-10.6. “Student’s” { Distribution. Another distribution of consider-
able practical importance is that of the ratio of a normally distributed
variate to the square root of a variate independently distributed by
the chi-square distribution. More precisely, if z is normally ‘distrib-
uted with mean x and variance o2, if u has the chi-square gdigbvibution
with k& degrees of freedom, and if « and u are independently Wistributed,

(8)

w

we seek the distribution of N
and letting O
¥= Z : #\\
t becomes \/iﬁ - The joint den:sif‘%r: ;>f Oy and u s
fy, u) = A —iééj_::;_l__ B/2g—tu (2

VR ()Y |

and we find the distribution of ¢ by the same procedure as was used in
the preceding sectioh,\,"'We substitute for y in terms of £ (y = ¢ vu/k)
in {2) and then integrate out  from the resulting funetion. The final
result is 4]
_ ol =1/ r
" G- il F Empes — e <ise @
a djstggb}ltion with one parameter %, which is also referred to as the
number of degrees of freedom of the distribution. Since [(z — w)/el®
{;‘a's“the chi-square distribution with one degree of freedom, it is evident
om (1) that ¢ has the F distribution with one and k& degrees of free-
dom. The cumulative form of the distribution is partially tabulated
in Table IV,

10.7. Distribution of Sample Means for Binomial and Poisson
Populations. In the preceding sections we have illustrated the two
methods of finding distributions of functions of continuous random
variables described in the first section. Here we shall illustrate
the technique for discrete variates in two cases of particular interest.

206




DISTRIBUTION OF SAMPLE MEANS §10.7

If 24, Zo, * - 0 2 Bn is a sample of size n from the binomial population
which hag density

fz) = pg=  x=0,1 : 13
the joint density of the 2’s is simply
floy msy -0 B = PR =0 (2)

The sample mesn 18
.1
T = ?'; 2 T3
N

o function of the random variates, and it is evident that the only pos-
gible values of T are 0, 1/n, 2/n, * * * 1. The probability,, g\(_ffn ,
that 7 takes on the value j/h is obtained by summing (2) oyj(;f‘a'll sets
(r1, Ts, © * =, Ta) such thab (1/n) 2z = j/n, oF such ilist = = J-
For all such sets, f(zy, o, * = * , Ta) h2S the same valde‘pig™; hence
the sum msay be evaluated by multiplying this valte by the number of

sets (1, T2, - - * , T) with the required specificahion. The number
of such sets is the number of arrangements of jlenes and % — j Zeros,
which is (j)'l' henee D

®

~
<N
R N

AN\ PR SN 1 S 3
g(ﬂ)—(j)p’q “J”/n-o’n’n’ | , 1 {3)

as we have found alrea.dy,iff;i’»ec. 7.7,

In a similar mannet ﬁ‘e\fﬁay find the distribution of the mean of a
sample, 1, @z, * , Y&g, irom 2 Poisson population. The joint
density of the obser¥ations i¢

a?- o et ~0,14,2 - @
'TE.%».?:"':xﬂ)=m T =Y L s
\ ;

™
¢

usin:g\f;.;}or the parameter of the distribution. The gample mean E can
ob f)’usly have any of the values j/7 wherej = 0,1, 2, - . TFora
particular value j/n, the z’s must be quch that Sz = j; hence

-i g"‘“P JIL?
I\n Tla!

Zoi=§

. 1 '
= g W Z ﬁ_;tt (5}

Zai =i

i
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§10.8 SAMPLING DISTRIRUTIONS

The.sum can be performed with the aid of the multinomial theorem
which, on putting all z; = 1 in equation (2.5.2), stales that

J'I

— i
Hx, -

"'The sum is therefore #7/7), and the required density is

A Ol GT1) S SN
§ (n) 7! 2=y =0y \(6)
The function may be wrilten explicitly as a function of Z:, (),
NS “
- _ & ﬂ"‘(?_’lﬁ)ﬂi % N -
¢{Z) = ) N {7)

We may notiee that since there ig a unique corrc}sf)ondence between

= j/nand j = Zay, the density of j is !
L _ . ?. \\
i = <9, e,
and hence that the sum of n obsefvations from a Poizson population
has a Poisson distribution w 1th the parameter equal to n times the
parameter of the original dlstilbutlon
10.8. Large-sample Dls,trlbutmn of Mammum-hkehhood Estima-

tors. We have invest iated several special problems in sampling
theory not only o I]}I{Silatc the methods of finding sampling distribu-
tions, but because™he particular distributions we have obtained are
important in a,pj')}i‘éd statistics. They are sometimes referred to s

““small-sampig.distributions,” though of course they hold for large or
gmall s&mpkwa and the term is merely meant to indicate that they are
valid forgmsll samples. In this scetion we shall consider a distribu-
tion mlich more general, in the sense that it is more or less independent

of the form of the population dlbtrlbutlon but valid only for large
"S@mples

We shall first consider the case of one parameter ¢ in a density

fﬁ(:m; ), and we shall show that the maximum-likelihood estimator
0z, @2, © + -, z) for @ from samples of size n is approximately
normally distributed under rather general conditions where » is large.
Befare doing so, it is necessary to consider the variate

u(@) = —log f(z; 0 -
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LARGE-SAMPLE DISTRIBUTION OF ESTIMATORS §10.8

The expeected value of u is

E(u)

1l

./— o [d% log f(z; 9)};{(2‘; 8)dx @)

é% fle; $dz 3)

If flx; ) is such that the operations of differentiation and integration
may be interchanged, then

Bw) = 2 f_i s O)de Oy
=2 =0 S\ @

' 4
Hence, if this condition is satisfied, the variance of mds

: _ [ [3 log f(z: 9)]2 (:c;.\ﬂj;%é’ 5

8f(x; Y 3 v
ff('t, 9)( TR\ (6)

and this may be put in another forin 1;»huh iz more useful for our
purpose. On differentiating (2) with respect to 8, we have

0= (69 log fl; 6\)\}\/@ Odz
= f (dgu log f(x\ 9)) fla; 8)dx —f—f ( Tog f(x; ) ﬂ:&n@_ dr
\

dfix; 8
/(dg\&gﬂx B)) flz; Odz + fm(j%b-‘ )) dx (N

The mt@fg’\li in (B) is therefore minus the first integral in (7), and we
maﬂ ﬁte

.

o = —F (692 log f(z; 6‘)) (8)

Now suppose a sample of size n is drawn from the population. This
Vil give rise to 4 sample of % values:

W) = Dlogsas ) i=12 @
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§10.8 SAMPLING DISTRIBUTIONS

Applying the central-limit theorem (Sec. 7.6) to the sample of w’s, we
may state that
0 = ‘-1- Z Ty
n

is approximately normally distributed for large » with zero mean and
variance o/n. Remecmbering that the likelihood of the sample of
#’s is f(x; 6) and that its logarithm (Sec. 8.4) is

L = Z log flxz:; 8) (10)
we have N\
1 6L
T - = 'S 1
YT nae R\, (1)

Hence it follows that 8L/84 is approxlmately normal]y thqtm ibuted for
large n with mean zero and variance nel.
This last result enables us to find the dlbtrlbutlap\of the estimator f.
‘We shall suppose that 8 is a root of
oL o
a B \ W
ie., that L actually has zero slope at 1ts maximum value. And we
shaH suppose that dL{6)/40 as a fu.nctlon of 8 may be expanded in a
Taylor series about 6: A 3

L) aL(®) e%b(e) L)
a6 ae< EYE @ - 0 + o136 (&~

(12)

(13)

where & is some po%between g and §. Since 8 is a root of aL(8)/89,

(13) vanishes, and we have
{8) _ _ L#) LB .
a%g) = ae(z) @ =8 — 5 (ea) @ — o> 1
Now hﬁ.‘Ve seen that
W\ 1 8L
\ "' ‘\/_?’;. o, 48

isappromma.tely normally distributed for large n with zero mean and
dnit variance. Using (14), this expression is
1oL _ 1 e2L(h) 1 L6
§ B —0)* (18)
Vroe 88 A/nos O @0 - \/?mmaes( (

and on the right we shall substitute w = +/n ou(§ — 6) to get

L@ _ _  AfLene] v 16_3@] (16)
Vno, a6 ailn 8 Vol | n 21868
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LARGE-SAMPLE DISTREIBUTION OF ESTIMATORS §10.8

The first bracket on the right of (16} is simply an average for samples
of size n of 56—9— log f{x; 6) and by virtue of (8) has a mean value o2,

Furthermore, if this quantity has a finite variance, (1/7)(9%L/86%} will
approach sl with probability approaching one as n becomes infinite.
The first term of (16} is therefore nearly w for large n.  The second
term of (16) approaches zero because of the factor 1/+/n if we assume
that the average of the third derivative of log f{zx; §) cannot become
infinite for any possible value of §. The right of (i6) is therefore,\
approximately w, and since the left of (16) ig approximately normal
with zero mean and unit variance, it follows that w has approximdtely
the same distyibution, We have finally that 8 is, for large samples
approximately rormally distributed with mean ¢ (the true ,parameter
value} and variance 1 /nc.rm where 42 is defined by (8). ~The mean 4
will be the exact mean of § for any sample size only if 5}13 an unhigsed
estimator. In general, we have seen that maximwmelikelihood esti-
mators are not unbiased so that § is the large-saadple mean, ie., the
value approached by the mean as % becomeg{ia;rge. Similarly 1/n02
may be the exuct variance, or it may be oplithe limiting form of the
exact variance as n becomes large, the, lmge—sample variance. One
could, of course, compute the vanance of'd directly by

Ff— BB =T - ﬁé — E(&)}if(2y; 0)da;

rather than by means of eqi\tlon (8), but this is usually the more
difficult computation. e

The above ‘argument i‘s.&mt of course, a proof of the asymptotic
pormality of §; we hgfedmerely outlined the nature of the proof. A
Tigorons demoustmtymn Tequires careful evaluation of the errors in the
Varous approxim@tions. While the maximum-likelihood estinator is
approximately n\ormally distributed for large samples under rather
general conditions, it is to be remarked that several conditions on the
01'1g1na,l dzs‘mbuhon must be fulfilled:

I‘ﬁ st be permissible to interchange the operations of integra-
tmn with respect to 2 and dlﬂerentmtmn with respect to 6.

(2) The expeeted value of 53 log f(x; #) must be zero.
a .
@) é_éi 108 f(z; #) must have finite mean and variance.

%) E 555 L(8) must remain bounded for all possible values of 4.

{5) The derivative of L(#) must vanish at its maximum.
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§10.9 SAMPLING DISTRIBUTIONS

These conditions will not be fulfilled, for example, if the parameter i
the range or a function of the range, for then (1) is not satisfied. We
have seen in particular that if 8 18 the range of a rectangular distribu-
tion, condition (&) is not fulfilled.

For a wide class of distributions, however, the maximum-likelihood
estimator is approximately normally distributed about the true param-
eter value as a mean for large samples. This 1s a powerful tool for
solving many important problems of applied statistics as we shall see
in the following chapters. The theorem is applicable to disefble as
well ag to continuous distributions. The only change in the¢c¢sonmg
for diserete distributions would be replacement of the mt}glal signs
by summation signs. \,

A gtraightforward extension of the argument will pmwde an analo-
gous result for the large-sample distribution of qcvvml parameters,
We shall merely state the result:

The maximum-likelihood estimators 81, 85, -\ f}; for the paramelers
of a density f(z; 8y, 8y, » -+, &) from sam}}l'es of size n are, for large
samples, approximalely dzatmbuted by thP\mutha? tate normael distriby-
tion with means 81, 8z, - + -+, 6 and@hlh coefficients |[ne™} in the quad-
ratic form, where \\ :

.’.

g% = _E[as 68,1{}gf(.c By, B, * - - ,9:;)] (17}

The variances and cavgyéc?mes of the estimators are ||(1/n)oyl|, where
S ol = e as)
The conditiofs“nder which this theorem i true are essentially the
same 28 th\o’% given in the case of one paramater,
The t*};{am cms obviously depend in no way on the fact that we have
- used, ynivariate distributions. The variate « in all the statements of
thl.ﬁisectlon may be replaced by a sct of variates (x, v, 2, *+ * ).
\10.9. Applications of the Large-sample Theory. 'T'o illusirate the
\188 of the theorem just given, we may find the large-sample distribu-
tion for the estimators of the {wo parametcers of the normal distribu-
tion. We shall write it in the form

1
2703

flx; 0y, 83) =

(17205 (e— b2 (1

For samplos of size n we have secn that the maximum-likelihood
estimators are
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Il

8 %er @
b= 1Y (o 0 (3)

i

Tn accordance with the theorem, these estimators will be approxi-
maiely normally Jdiztributed for large samples with means 61 and fs
and coefficients ne¥ in the quadratic form, where

T, o
i = — it < y
7 B\ 33, 06, (\4)‘
Sinee \:\“\
log f = .—;l. log 27 — l log 0 — _]_ (x — 6,) "’.\'"/ )
2 2 ’ 283 g '\‘s
2,
the required derivatives are \:\\\,
B‘E&f 1 ,\\J
B = T 7 .’.'
afy B, z"i}\\
62 10?.;— - r — 81 AN ~\
69] 8 ] ff?s’ -
alogf _ _hz;‘;‘(‘c — 8!
agz 28 &

and beeause p

Fi(z) :\(@1\ Blo — 61 = b2

3

the ¢¥ are readily seemto be
t’ '0’00/

) :..;\‘) = 0 ||
\s. H .i:,-ill — || 4 || (6)

".‘s; .
y{g}}tfgt&—samplc distribution of the estimators 18, therefore, saY,

M af (Bu—b0° (a0
—2:[. J2 T8t

g(8,, By = ‘21}‘\—/%5‘:; @

wit . . . .
th large-sample variances and covariances glven by

I% 0
" I
o =1y 2 ®
[° w1
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Since 612 = 0, the estimators are shown to be independently distributed
for large samples; we have already scen, of course, in See. 4 that they
are actually independent for any sample size.  The large-sample dis-
tribution of i is exactly the normal distribution as givenin (7). Bui
the exact distribution of 85 is given by the gamma distribution for any
sample size and this appears to conflict with the normal distribution
indicated in (7). However, it can be shown that theexact distribution
of 8; docs approach the normal form

y 7 (f— )¢
1_ ﬁ __]" 6_5_'_25‘92 N
»\/% 2 iy "\..'\

'\
N

Q"

as n hecomes large (see Prob. 38, Chap. 6).

As a second illustration, we shall obtain the largessamhple distribution
of the estimators of the parameters of a multin&ﬁiul digtribution.

Suppose the elements of a population may: ¥e classified into & +1
categories, say Ay, Ao, < » +, dija. Weyshall deseribe an element by
the set of variables (z,, 3, - * * , Zu.i) Where, if the element helongs
to i, % = 1 and all the olher z’sare zero. If the probability is pi
that an element drawn at randons b&longs to A, then the joint density
of the #'s is N’

CRY

f("ﬂl, Xy, "t 0, xk-}—l) - I;flf)g e Pif{_f 2 = 0! i; Sy = 1 (9)
where Zp; = 1. Summing f(z1, - - -, %) Over all possible sets of
Z"S! namely, (1) 0\6\‘% T 0): (0} 1} D! 0} T :0): (0) Ol 1} 0? T
0}, and =0 on, we have

K[ Y k41

AO7 TS ey = ) pe= ]
H i=1

A
?he’éﬂtributi‘m (9) is a multivariate distribution with & functionally
iddependent parameters; we shall take them to be py, 2, ~ P an

(think of pryyas a gymbolfor 1 — py — p2 — + - = — i

Let a ssfmple of size # be drawn, and let n; be the number of S.ample
elements in 4;; then 3n; = # and the likelihood of the sumple 18

k41
Il p
jml
the logarithm of which is
: E+1
L{py, po, - - - » PR} = y n; log i (10}

=1
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The estimators are found by putting the first derivatives of . equal to
gero and sclving for the parameters.  The equations are

L i P

dpr M Pen (11)
af 3 Pt 0

apa P Pryt

and so on, remembering that pe: representgs 1 — py — ps — -+ - -
— . On maliplying the first equation by pipes:, the second by
pepres, and so on, and adding the results, onc inds Prp = mepe/n, and, >
then that O
¢\
b= {=1,2, -,k ON2
n A
¢ e &

We wish to find the approximate distribution of the esinmators in
{(12) for large samples. Applying the theorem of the})reredmg sec-
tion we know that the distribution is normal and thifthe means are i

We need only to find the coefficients ne® of the; %}u’adratlc form. By

equation (8.17) ’ S
. at 0N
o= —p{ a8 ) (13)
_ (5ps aps 4
Differentiating log f, we have N
g2 m‘ﬁl PP .
—_— ]_0 P o= s if 2 7‘5")‘
el apr‘ gf m{\ ?3;‘:4-1 (14)

¢\J ; iy \
N S A

and taking expected véfms

k-1
’\"'E(x@) = Tn ” e =P (15)
oS
.%" ;c+1
s.:.‘\ E(xg;+1) = 2 i1 H P = Pe
Thug O i
\/ 1 e
o = . if 4 7
Pryt
1 1 o .
i Prr1
ind we may write these two relations as one using the symbol di;,
si=fiy Lo ik (17
i Prri
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. k1
The value of the determinant |¢%| can he ghown to bel / [l p:; hence
i

the approximate large-sample distribution of the estimators is, say,

k &
1 )E 4 b 53 S BV oi-patei-b
1

g(ﬁh ;52) T :ﬁk) = (E : Wﬂ’ze i=lj= no
P
1
N18)
The inverse of |jo¥| has elements ol '
£ N

o = vl = ) O

aif = TPy T 75.? T::j = 1: 27 ‘ '(:’.;"k

as may be verified by compuling the product |l&‘§|‘\ lleis].  The Jarge-
sample variances and covariances of the estimgtors are therclore given
by multiplying (19) by 1/n. These hap’ptﬁ}to be, in facs, the exact
variances and eovariances for any samplosize

10.10. Problems Re

1. Apply the method of egiiation (1.4) to the example treated in
equations (1.14) to (1.17). &% '

2. If x is distributed bgy(z) = 23,0 < 2 < 1, find the distribution
of u= (3z — 1)\ '

3. fris distribh\ﬁgﬁ by f(z) = 1,0 <z < 1, find the distribution
of & for samples %, x» of size {wo. Observe that the range of «2 for
fixed z is 0 «(@» < 2% when ¥ < 14, and 28 — 1 <a; < | when
E>35. N

4, Tf #9@normally distributed wilth mean p and variance o?, show
by trapsferming the variate that » = [(z — u)/e]* has the chi-square
distribution with one degree of freedom.

d “B." Obtain the distribution of the mean of a sample of size n from &
N\normal population by using the moment gencrating funetion.

6. If %2, %3, x4, * - - * x% ave independently distributed by chi-
square laws with 7y, ne, - + -, ny degrees of freedom, respeetively,
show by means of the moment genorating function that « = Zx; has
the chi-square distribution with n = Zn; degrees of freedom.

7. Using an argument similar to that given for the derivation of the
chi-square distribution and the fact that {1 — 2% = (1 — 2t)o],
show that the quadratic form of & k-variate normal distribution has the
chi-square distribution with & degrees of freedom,
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8. Iind the mean and variance of a chi-square variate with %
degrees of freedomn.

9. Use the integral of the I distribution over the whole range to
obtain an identity in the parameters m and =, and then use the identity
to obtain the mean and variance of F,

10. ¥ind the .95 probability level of F for two and four degrees of
freedom by direct integration of the distribution function.
11. Show that the transformation

mFin
TTE (mF /n)

shanges the ¥ distribution to the beta distribution. )
12, Show, by transforming the variate in the ¢ dleI‘lblltIOIl«, that

# = {* hyy tho F distribution. N
13, My, 2z + + ¢, .15 a random sample from a non{aj,populﬂ,tion,
show that )

I—n \
U= .\..
i [Z(@: — &)* \‘\
n(n — 1)
has the ¢ distribution with » — 1 degregs, of’ frocdom
W, 1f 21 and z4 are o random sa,mp]‘e of two from a population with
fiz) = e & > (3, show ihat s xi @, and v = /@, are inde-

bendently dmubutod ~
18. If 2, y, 2 have the jomt\denmy

2 \—— ————— L, 5 > 0
O e AT

find the dla‘rmbut Q of w=z+y+a

18, If 2, and, agldre 2 randor sample of two from 2 populatlon with
the uniform t;fzstmhutlon over the unit interval, find the distribution’
of U = -Ll.hg

17, lt"ils And % huave the bivariate normal distribution, show that

\ )

and

e YT
Ty Ty

are mdependentl v normally distributed with zero means and variances

L4 o) and 20 — ).
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§10.10 SAMPLING DISTRIBUTIONS

18. If z and y are independently normally distributed with zero
means and unit variances, show that « = 22 4 y? and v = 2/y are
independently distributed. What arc the names of the individual
distributions of « and »?

19, Bhow that “‘Student’s” distribution approsches the normal
form when the number of degrees of freedom becomes infinite,

20, If m1, x5, + * + , 2, are a random sample from a normal popula-
tion, find the joint distribution of

E ?3,‘ &y
u=2x,- and L‘-T-ZIL',; O0<r <k <n
1 r 2 AN

21, If = and y are independently distributed by cHisbquare laws
with m and n degrees of freedom, respeciively, show™that 4 =« + ¥
and v = xz/y are independently distributed. s

22. Consider samples of size n from a bivariat"é;}lormal distribution.
Uging the notation of Sec. 9.7, show thai

a " o::\ -
V=1 (5 — By =N+ &)
Y &11 + &22 :’_‘ 2&12

has “Student’s” distribution withW — 1 degrees of freedom.

23, If x and y are horizonts;,l‘é.hd vertical components of the devia-
tions of a shot from the centé® of & target, and if « and y have a bivari-
ate normal distribution With zero means, p = 0.1, and standard devia-
tions of 10 inches, find the equation of an ellipse which will contain a

- ghot with probabiliﬁx\.%. {Use the result of Prob. 7.)

24, Tind theahehn and variance of (1/n)=(e; — &) for samples of
size n from aNfermal population, and show that they approach the
large-samp\lﬁz}mean and variance, ¢2 and 2¢%/n, as # increases.

25. xy T3, - + -, 2; are independently and normally distributed
With r,;t’e\ans ¢ and variance ¢, show that

e
'.\. 3

& &
k3
\: u-——Ea‘:x,-

where the a; are constants, is normally distributed with mean Za:m:
and variance Za%?% Then deduce the distribution of the sample mean
from a normal population by putting a; = 1/k.

26, Obtain a result similar to that of Prob. 25 when the z: have the
multivariate normal distributien.

27. Find the large-sample distribution for the ecstimator of the
paramcter 8 in the gamma distribution,
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28. Find the large-sample distribution for the estimator of the
parameter of the Polsson distribution,

20, If (P, 2o, = 0, Tra), @ = 1,2, - -+, nis g sample of size n
from the multinomial population with density

k

{[px x{=0,1;2x{=1;2p‘,=1

1

find the distrilbution of the variates n; = Z #is, and find their variances
a LI\

and eovariances,
30. Verify ihat jiogyfl defined in equation (9.19) is the mverse of

{¥) given by equation (9.17).

L .

8L. Evaluaie the determinant of ||y in Prob. 30. 8¢
32 Uy, 2+, 2, are mdepend(,nt]y normally dtstnbuted with
the same mean bul different variances o2, o2, - \{rﬂ, show that
z ¢ /
%= ET—;—EQ— andv = I(x; — u)?/otare 1ndependentxy distributed. Show
also that u is normal, while v has the ch1~5qnare distribution with
n ~ 1 degrees of freedom. Y

33. Tet s* denote 2(z; — )% (n — Dy the mean square for samples
ofsize n. For three samples from n,ormai populations (with variances
of, o3, and o%), the sample sizes vb@lng ny, ns, and ns, find the joint
density of .

&2
U = i%K and =2
’\\ 83 8%

Where the &} sk, and sa are the sample mean squares.

34. Tet asam plc,. &f Jsize n, from a normal population (with variance
o1} have mean g sgtrire i, and let a second sample of size ne from a
second nor f}opulatlon (with mean u» and variance of) have mean
% and meaz“xare s3. Find the joint density of

'“\""\ ' @ = Vg (E ~ pa) and v.=
\ ) o2 .

M‘Cﬁ
Pere A ey

218



%

CHAPTER 11
INTERVAL ESTIMATION

11.1. Confidence Intervals. A point estimate of a parameter is not
very meaningful without some measure of the possible, error jipn the
estimate. An estimate 8 of a parameter § should Ke accompanied
by some interval about , possibly of the form § — dto 8 +,d together
with some measure of assurance that the true paramefoy ¢”does lie
within the interval. Estimates are often given in such-form. Thus
the electronie charge may he estimated to bc'(?r:?'ﬂ} + .005)107°
clectrostatic unit with the idea that the firstfactor is very unlikely
to be outside the range 4,765 to 4.775. A cost ¥ecountant for a pub-
lishing company in trying to allow for all faeibrs which enter into the
cost of producing & certain. book (actual{production cosls, proportion
of plant overhead, proportion of exeghlive salaries, ete.) muy estimate
the cost to be 83 + 4.5 cents per yolutne with the implieation that the
correct cost very probably lies helween 78.5 and 87.5 cents per volume.
The Bureau of Labor St-ati%i@s may estimate the number of unem-
ploved to be 2.4 + .3 milliol® at a given time, feeling rather sure that
the actual number is befikeen 2.1 and 2.7 millions.

In order to give p{%cision to these ideas, we shall consider a par-
ticular example. ‘S}ppose a sample (1.2, 3.4, 0.6, 5.6) of four observa-
tions is drawnArem a normal population with unknown mean # and
known standard deviation 3. The maximum-likelihood estimate of p
is the mea{i}f the sample observations:

&

al
&

F=27" ()

N .
e wish to determine upper and lower limits which are rather certain

fo contain the true parameter value between them.
In general, for samples of size four from the given distribution, the
quantity

E—p (2)

will be normally distributed with zero mean and unit variance. f i
the sample mean, and 34 iso/+/n. Thus the quantity y has a density
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CONTFIDENCE INTERVALS g11.1

1

Y) = == e b 3
= 7 o ®)
which is indepeadent of the true value of the unknown parameter,
and we can cornpute the probability that 3 will be between any two

arbitrarily chosen numbers. Thus, for example,
1.96
1 )y = 95 @)

P(—1.06 <y < 1.96) = f
In this velation the inequality —1.96 <, or

T — M OV
—1.96 < —g7— N
) % . ~
is equivalent to the inequality

o < X4 3096 =2 + 2.94
and the incquality .

Y < 1.86 ‘,"\\«‘
is cquivalent to x\ v
pn>E- 2,94V

We may thercfore rewrite {4} In the'f:g.)ﬁﬁ
P(r — 2,94 < kS B + 2949 = @

and substituting 2.7 for %, M{’"
P&t < u < 5.64) = 95 ®)

Thus two limits haye Been obtained (—.24, 5.64), which we may say
are 45 per cent cortein to contain the true parameter value between
them. \\ _

The mea, \iﬁg’of (6) necds to be examined carefully. It appears F%}at
1 is the yarable and that the statement implies thab the pro’!)ablht-y
t'haj,t? ’fzh’éfVériable ulies between — 94 and 5.6415 95. This. ig, of course,
ndnsdnse. g ie a fixed number, the mean of the population SamPled_-
Furfhermore the true mean g either does or does not lie between — 24
and 564, The only correct probability staternents possible 10 this
gituation are -

P(—24 <p <560 =1
if 4 actually is between the numbers, of
P(—24 < p <389 =0
i 4 is not. between the pumbers. 618 possible, bowever to give (6)

& meaningful interpretafion.
i 221
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§11.1 INTERVAYL ESTIMATION

. The statement in equation (5) does have meaning.  The prehability
that the random tnierval, T — 2.94 to T + 2.94, covers the true mean
uis .95. That is, if samples of four were repeatedly drawn from the
pepulation, and if the random interval & — 2.94 to & -+ 2.94 were
computed for each sample, then 95 per cent of those intervals would be
expected to contain the true mean u.  We do therefore have consider-
able confidence that the interval —,24 10 5.684 does cover the true mean.
The measure of our confidence i3 .95 because before the sample was
drawn, .95 was the probability that the interval we were going to
construct would cover the true mean. In {(5) the number 95 i true
probability; in (6) it is not a true probability although it is« nteasure
of our confidence in the fruth of the statement on thoe le ib\o‘f E’b) We
shall call it the confidence coefficient, or the fiducial prob&bei’ary, to dis-
tinguish it from our ordinary eoncept of pr{}babdmy N\ And we ghall
rewrite (6) as ¢* 0

N\ -
Pi(—.24 < p < 564) =< 95 (7)

and read it “The fiducial probability thatothe interval —.24 to 5.64
covers the true mean is .95.”  The wdtd” fiducial indicates nothing
more than that the probability assoclated with the given int erval was
.95 before the sample was drawn, 4

The Interval —.24 to 5.64 is, Galh xd & confidence tnierval; more spe-
cifieally it is called a 95 pel cent confidenece interval, the confidence
coefficient, or fiducial probablhty, being expressed as a percentage.
We ean obtain interv, a}gwlth sny desired degree of confidence. Thus,
since ¢\J

~.\>(—2.58 <y < 2.58) = .99 (8)

a 99 per cent, {gonfidence interval for the truc mean is obtained by
convertingthe'inequalifies as before and substituting = 2.7 to get

£\ . :
A Pr(—1.17 < g < 6.57) = .90 (9

{tn is'to bo observed that there are, in fact, many possible intervals
wﬁh the same fiducial probability. Thus, for example, since

V

P(—1.68 <y < 2.70) = .9 (10)
another 85 per cent confidence interval for u is given by
Pr(~1.35 < p < 5.22) = .05 (11)

This inter\«:a.l is inferior to the one obtained before because its length

6.57 is greater than the length 5.88 of the interval in (7); it gives less

precise information about thelocation of .  Any numbers ¢ and b such
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CONFIDENCE INTERVALS §11.1

that ordinates at those points include 95 per cent of the ares under f {y)
will determine a 95 per cent confidence interval. Ordinarily one would
want the confidence interval to be as short as possible, and it is made
50 by making @ and b as close together as possible, becanse the relation
Plo <y <b) = .98 gives rise to a confidence interval of length
{o/v/m)(h — a). 'The distance b — ¢ will be minimized for fixed area
when f{a) = f10), as is evident on referring to Fig. 45. ¥ the point b
is moved & short distance to the left, the point « will need to be moved
a lesser distance to the left in order to keep the area the same; this
operation decrenscs the length of the interval and will continue ta'd

50 a3 long as f{b) < f(a). Since f{y) is symmetric about y = (tn the
present example, the minimum value of b — a for fixed areg\otturs

) K7

¥
 Fi 45,

. 22\
¥hen b = —q. Thus (7 gives the shortest 95 per cent confidence
nterval, and () gives the shortest 09 per cent confidence interval for
. ",

"The general methdd illustrated here is as follows: One finds, if
possible, a funefien of the sample observations and the parameter o
be estimatel\zﬁtﬂe function y above) which has a distribution inde-
pendent of e parameter and any other parameters. Then any prob«
a.bility .@%-éﬁ;enlellt of the form Pla <y < b) =+, where y is the
funetion) win give rise to a fiducial statement about the parameter.

Eidtechnigue is applicable in many important problems, bu in many
Others it, ig not, beeause it is impossible o find functions of the desired
form which are distributed independently of any parameters. These
latter problems can be dealt with by a more general technique to be
d&scribed in Sec. 5.

The ideg of interval estimation ean be extended to include simul-
taneoyg estimation of several parameters. Thus the two parameters
of the normay distribution may be estimated by some plane region E
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§11.2 INTERVAL ESTIMATION

in the so-called parameter space, the space of 2ll possible combinations
of values of x and ¢% A 95 per cent confidence regien is a region
consirizetible from the sample such that if samples were repeatedly
drawn and a region constructed for each sample, 95 per cent of those
regions on the average would include the true parameter point {ug, of).

Confidence intervals and regions provide good illustrations of uncer-
tain inferences. Im (7) the inference is made that the interval —0.24
1o 5.84 covers the true parameter value, but that statement is not made
categorically. A measure, .05, of the uncertainty of the inferenceds an
essential part of the statement.

N
o oA

ST, 46.

11.2. Confidence Intetvals for the Mean of a Normal Distribution.
The method used in the preceding section cannot ordinarily he used to
estimate the mean ef a normal population, becausc the variance o
is not ordinari]y\l%ﬁbxvn. The function y takes the form (for samples
of size n) AN

& -4

z\o%" y = (}-/"\/—?i (1)
and(gn’;converting the inequalities in, say,
V P(—1.96 < y < 1.96) = .95 @
one finds
Pz—196-% <pu<z 1.96L)=.95 3
( Va RS + v ®

For a given sample, 7 and n are known, but ¢ is not, so that limits for #
cannot be computed. Of course, an estimate ¢ could be substituted
for «, but then the probability statement would no longer be exact
and might be very far wrong for small samples.

224




CONFIDENCE INTERVALS §11.2

The way around this difficulty was shown by W, 8. Gossett (who
wrote under the psendonym of “Student”) in a classic paper which
introduced the ¢ distribution. He is regarded as the founder of the
modern theory of exact statistical inference. The quantity

el T H
IRV R DOy @

imvelves only the parameter g and has the ¢ distribution with n — 1
degrees of freedom which does not involve any unknown parameters
It is therefore possible to find a number, say {45, such that

oA
Pl—tos <t <tw) = [ ftin—Ddt =95 N

FH . K7\

s ) Zos
AFrG. 47,

AN

k) X
and then to convert the h{b{iimlities to obtain

;g [RET B : 0~ _@_%] _ 05
r [$ £.os @,{%@T_l)_ << T4 Lo aln — 1) 95 (8)
in which the‘Lin}i:cs can he computed for a given sample to obtain &
95 per centaponfidence interval,

The gagmber ¢, is called the 5 per eent level of ¢ and locates points
“’hii\éwf off 2.5 per cent of the area under f() on each tail. Since
IO ¥symmetric about ¢ = 0, (6) gives the minimum 95 per cemt
Boflﬁdence interval, Other confidence intervals can be obtained by
"sing other levels of £, Thus a 99 per cent confidence may be found
b?’ using the number £.q;, which cuts off area .005 on each tail of the ¢
dlsh‘ibl_‘ttion_

. Figure 48 shows the result of computing 50 per cent confidence

Miervals for 15 samples of size four actually drawn from a normal

Population with zero mean and unit variance. The intervals are
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§11.3 INTERVAL ESTIMATION

shown as horizontal lines above the p axig, and, as expected, about
half of them cover the true mean zero, Similarly i 95 per eent con-
fidence intervals were used, about 95 per cent of them would be
expected to cover the frie mean. If one consistently uses 95 per cent
confidence intervals to estimate parameters and statez cach time that
the interval contains the true parameter value, he can oxpect to be
wrong in 5 per cent of those statements,

N
—_— O\
O
R4
B 7\
9
| .o',:,; ’ | A
3 Fie. 48.
F{xY m\“’
e
A\
% N PR

'S

O
3. Confidence Intervals for the Variance of a Normal Distribu-~

LJdion.  For samples of size n from a normal population, the gquantity

\‘:

Fia. 49,

/3
where % is the sample mean, has the chi-square distribution with n — 1
degrees of freedom. Hence a confidence interval with confidence

coefficient ¥ may be set up by finding two numbers, say ¢ and b, such
that

Plo <t <b) = [ fdxt = 7 @
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On converting the inequalities, we obtain
e, — T2 . — )2
P[—(m“g““x‘)“w%mz(x’a ﬂ]='r (3)

which will deiermine a confidence interval for o2
Since the length of the confidenee interval is

C-D73 - ay @

Q.

the shortest confidence interval for a given sample would be obtairted

by choosing c so as to minimize [(1/a) ~ (1/)] for the chosen ¥alue of

1. The reguired computation is so tedious that it is rarelf one in

practice, and tables giving the required levels have not beenipublished.
»The ordinary chi-square tables give numbers x? such {h:&t

Plxt > x) = [ 7 foxc)dx? =% ®)
X x'\\’
for selected vulues of e, In setting up, say',ﬁ’gf} per cent confidence
‘imterval, onc merely chooses ¢ = x5 andN= x%.;, 1.€., selects ¢ and
b o that avea .025 is cut off from eachitall of the distribution, This
very nearly minimizes the length ofubfié confidence interval unless the
number of degrocs of freedom is guite small,

11.4. Cenfidence Region for Mean and Variance of a Normal Dis-
tibution, In constmcting«’é: region for the joint estimation of the
mean p, and variance 2\'@%1& normal distribution, one might at first
sight be inclined to use the individual estimates given by the £ and the
x* distributions. ‘Phat is, for example, one might construct a .5025
(= .85 region :;Ké“n\n Fig. 50 by using the two relations:

2\
P\ 4 Sy — F)? _ 2 — 5)2] _
F ["‘f ';:-Y'% % < po < T A Los 4 ’W 95 (1)

N\ Y z)®
~C S(w - B, _Z.(it’_f_—_f“.l] = .95 (2)
\ ), P [W’ < o < Xlars

%8uming that the probability of both ocourrences is the product of the

Separate probabilities. This is incorreet because ¢ and x? are not

mdependently distributed. The joint probability that the two inter-

vals cover the true parameter values is not equal to the produet of the

“eparate probabilities. Hence the probability that the rectangular

Tegon of Fig. 50 covers the true parameter point (s, o3) is not .9025,
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§11.4 INTERVAL ESTIMATION

A confidence region may be set up, however, by uzing the distribu-
tions of  and Z(x; — #)?, which are independently distributed. 1If,
for example, a 95 per cent confidence region is desired, we may find
numbers a, a’, and b such that

P( a < _<a,)=\ﬁ9"5g.975 (3
G'[};‘\/?'E

o F)e
P [a’ < E("’UJ < b’} = /05 @
D N\
o? _
A\
2 'S
E(x,-x)/z\’ W\
-X)x° ozs,
c ‘Ex;—_z "’:' z =X -
Xt 5, /=5 n_f) Ve et .’%
AN
) F1a, 50

The joint probabﬂﬁ}\r

PL*—‘a < og o < 2z — . ) < b’] = .98 {5)
W -\l oy, \/ﬁ T
beca,use\j} the independence of the distributions. The four inequali-
ties i (5) determine a region in the parameter space which is casily
foqmd by plotting its boundaries. One merely replaces the inequality
\'“‘fglgnh by equality signs and plots cach of the four resulting relations
as funetions of u and o2 in the parameter space. A region such as the
shaded arca in Fig. 51 will redult. A confidence region for {(po ou)
would be obtained in exactly the same way; the relations would be
plotted as functions of ¢ instead of ¢%, and the parabola in Fig. 51
would beeome a pair of straight lines
=12+ 2
)
intersecting at F on the x axis.
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A GENERAL METHOD FOR OBTAINING CONTFIDENCE INTERVaLs S11.5

The region we have constructed does not have minimum area, bub
it is eagily constructible from existing tables and will differ but litile
from the region of minimum area unless the sample size is small.  The
mintmum region is roughly elliptical in shape and difficult to construct.

Ngr=x (=i Vla’
- 1 \
oY
=R

N

o.l

7
<

? &"
(R PG Yn
- . F] *’.{\ 7 =
Fiz, 51. x\ v

11.6. A General Method for Obtainihg Confidence Intervals, The
method used in the preceding seaﬁitg’)ns for determining confidence
intervals and rogions required that¥inctions of the sample and param-
eters be found which were distributed independently of the param-
eters. It is possible to sct,gp confidence intervals, however, whether
or not such funections os 312 .

Given & population :\%h density f{z; ) and an estimator 8(z,

* ) For sample@df size n (one would ordinarily use the maximum-
likelihood estimgtior), we may determine the density, say g(4; 8}, of the
estimator, We ghall suppose, for definiteness, that a 95 per cent
confidence iﬁﬁeﬁval i desired. If any arbitrary number, say ¢, is
substitutedMor ¢ in g(4, ), the distribution of § will be completely
specifigdhAnd it will be possible to make probability statements about
f. \Tn‘;ﬁarticular, we may find two numbers ks and ke such that

P < i) = ff@ g(8; 6)dé = 025 0

P > hy) = ﬂ 7 gtd; )8 = 0% 2)

The humhbers ky and ks will depend, of course, on the number .substi-

tuted for ¢ in g(8; 8). In fact, we may write A and he a8 functions of

% 1n(8) and ha(8). The values of these functions for any value of #
229



§11.6 INTERVAL BETIMATION
are determined by equations (1) and (2). Obviously
Plha(8) < § < ha()] = |, )

(e

o(8; 9)df = 95 (3)

The functions ~1(6) and 2:(¢) may be plotted against 4 as in Fig. 52.
A vertieal line through any chosen value & of § will inlerscet the two
curves in points which, projected on the # axis, will give limits between
whieh 8 will fall with probability .95.

Having constructed the two curves 8 = ki(6) and i = h:{8) e may
construct a confidence interval for 6 as follows: Draw a sample of size
n and compute the value of the estimator, say §. A ubyizéntal line

N

ACERS 16)
) &
6? . 3

@

Fia. 52.

NS
through, t;li}’ﬁ\pOint 8" on the 8 axis (Fig. 52) will intersect the two curves
at po\ii\k&r which may be projected on the # axis and labeled &, and 62
as i the figure. These two numbers define the confidence interval,
Mf;(jli,'i‘la is ensily shown that

Pe(8s < 6 < 61) = .95 €

Suppose that we were in fuct sampling from a population that had
¢ as the value of 8. The probability that the estimate § will fall
between hi(#) and Rh.(8) is .95. If the estimate does fall betweel
these limits, then the horizontal line will cut the vertical line through
¢ ai some point between the curves and the corresponding interval
(62, 6,) will cover &. If the estimate does not fall between hi(8) and
ha(8"), the horizontal line does not eut the vertical line between the
curves and the corresponding interval (#., #,) does not cover §. It
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A GENERAL METHOD FOR OBTAINING CONFIDENCE INTERVALS §11.5

follows, therefore, that the probability is exaetly .95 that an interval
{62, $1) constrneted by this method will cover 8, And this statement
ig true for any population value of 8.

It is sometimes possible to determine the limits 8; and 8, for a given
estimate without actyally finding the functions %,(8) and hu(6).
Referring to Fig. 52, the limits for 8 are at points 6. and 6, such that
Bi(fr) = ¢ and hs(f) = §'. In terms of the definition of ;s and ke,
we may say that 8; is the value of ¢ for which

[7 . o 06 = 025 | (@
and 8. is the value of 8 for which \ \J)
ﬂ;’ g(8; 0)dé = 025 ~A®

If the left-hand sides of these two equations can ‘béj\@iven explicit
expressions in terms of 8, and if the equations pgn™be solved for @
uniquely, then those roots are the 95 per cent xchq,licié;:Lce Limits for 6.

If {8 and k.(6) are not monotonic functions. of 6, the eonfidence
interval may in fact be a set of intervals\\Phus suppose the curves
of Fig. 52 bent down farther to the right,sp'that the horizontal line at
# eut them again, for example, at points 3 and f,, Then the confi~
dence interval would actually consist of two intervals (#;, 6) and
{03, 85).  The fiducial statement about & would then be of the form

Pr(02 < 8 <Gy, or 6 < 0 < 0) = .95 ')
(™ .
However, in most sityations encountered in practice there will be a

single interval, or it MM be possible to select a single interval on the
basis of other ev(fehce concerning the experiment which produced
the sample ohyerdations.

- The meth@déscribcd here for obtaining confidence intervals may
be extendea: to the case of several parameters, but a geometrical
representsiion hecomes impossible even for two parameters. Suppose
a dis{n‘bht-ion depends on two parameters 8; and §;; we may find a
plane Tegion R in the #,, 8, plane such that

P(d,, 6:in B) = f f g(By, 8; 6, 62)df, dé: = .95 (8)
B

By tonsidering all possible pairs of values of f, and 85, we can generate

& four-dimengional region in the @y, 65, f1, 82 space which is analogous

to the two-dimensional region between the curves in Fig. 52. Now
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suppose a sample is drawn and the estimates ¢ and 84 calculated. The
intersection of the two hyperplanes § = & and 8y = 6; with the
four-dimensional region will determine a two-dimensional region,
which, when projected on the 85, 82 planc, will be a 05 per cent confi-
dence region for 8y, fs,
" The argument may be extended to cover the case of k parameters.
The method will determine a confidence region for all the parameters
of a distribution. If one wishes to estimate some but not all of o set
of parameters, the method can not be used in general, though itday be
modified to handle the problem in special eireurmstances. There
is as yet no general solution to the problem of sctting, 1{11"03nﬁdence
regions for a part of a sct of & parameters in a distribwbion funetion
except in the case of large samples. N

Illustrative example: As a simple illust-ration,,“g'é "may consider the
estimation of « in 8

flx; o) = % (e — ) 0,1&\€ T <« (9)
R&

for samples of size one, If z is the(ghservation, the maximum-likeli-
hood estimator is found to be ¢ 232x by solving

ay

8%{%’(& - x)} -0

2l

AN
for . The dis-tribu{iﬁoﬁ of the estimator is
N
> 1
".\'g(&; @) =5 (22 — & 0<a<2a (10)

1N .
so that 95 @cr cent confidence intervals are obtained by deterpuning
h(a) @lid ha(e) 5o that

™3 ki) N R
A ﬁ] g(&: a)d& = 025 an

N/ ﬁ 2(';) 0(@; a)da = 025 (12)

The integrations arc easily performed in this case and give, on solving
for hy and ks,

hile) = 2(1 — +/07B)a (13)
ho{a) = 2(1 — +/.025)a (14)

These plot as straight lines, as in Fig. 53. For a given observation,
say & = 2, the estimatc is & = 4 and the 95 per cont confidence inter-
23%
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\-'al is given b}'

2 2
_}’} ——— i m—e———— o = .9'- 1:
(] — /025 “ 1 — ~ -975) ? 1)

Actually, since

is distributed independently of «, it was not necessary to use the gen-
eral method in this problem. We could have found a confidence
interval for o by getting .95 limits for 4 and then converting the
inequalities to get a statement ahbout a. A,

- ¢
& N\

o) B \

{< Fi1e. 53.
11.6. Confidence In ts for the Parameter of a Binomial Distri-
bution. 'We shall apply h( general method deseribed in the preceding

section to a pr oblem e hu h requives its use. If a sample, £y, %2, ¢ =+,
Ty, 18 drawn fro,Q @ bmomlal pepulation with
D i py = (1l —p)r =01 (1)
th . '\ ] i
© ma{ﬂmﬁim-hkehhood estimator of p is
oY
& \ud fj = .?’i (2)
’ n
‘}y}.lere ¥ = Ta; canchave the values 0,1, 2, « - =, n. The density of
Py . _
12 ' L
9(5;p) = (?;’:lp) prE(l — p)rH =0, o )

304 1§ 14 not possible to find & function of # and p which is distributed

md“pendently of p.
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Again we shall suppose for definiteness that a 85 per cent confidence
interval is to be constructed. The first step is to delermine the fune-
tions k(p) and ha(p). Forp = 4, for example, we would, in aceord-
ance with the preceding section, seek a number h.(.4} such that

Pl < ha(4)] = Z (T;) (A6 = B2 (4)

7=0

However, in view of the discreteness of the distribution, nhy itthe
sum must be an integer, and it will be impossible t¢ make,the sum
exactly .025 for every value of p. This need not worry i /though.
We do not need a curve hi(p) defined at every p. The only points of

interest are those which correspond to the possible yal‘ifes of f. Itis

in fact, possible to use the technique indicated byeéghations (5.5) and

(5.6) of the preceding section, because an explcit’ expression for the

probabilities on the left of these equations\is tmmediately at hand.
Fo N\

Assuming we have an estimate €
o EO 5
=5 ®)
the 95 per cent confidence uppelj'];i&riit py may be determined by finding
the value of p for which &%

é{:(\;) (1 — p)v = 025 (6)

and the lowe;"kﬁ:ni% ps ig the value of p for which

I
&/

#
5 &

L

z (”;) p(l — p)v = 025 (M

9 y=k

'"{f R is zero, the lower limit is taken to be zero, and if & = #, the upper
}imit is taken to be one.

For small values of n, equations (6) and (7) may be solved by trial
and error for the roots py and ps, but this computation rapidly becomes
tedious with increasing n. A simple method of solution is pTOVid_e
by Pearsen’s tables of the incomplete beta function. The cumulatlvé
form of the beta distribution is

P; o, ) = ("""—M-l—)! : te(1 — D dt (8)
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and repeated integration hy parts gives
Fleia, 8) = — 2 (oz + .3 + 1) 291 — g)etst L § (9
At i
=0

It follows that partial binomial sums are given by the table of F(x; «,
8). We may write equation (6) as

&
) (’;’) Pt = 1= Ppi by —k~1) = 025 (10}

y=0

and find at ouce in the table the value of p which corresppc@&‘s}o
F = 975 for the given values of kand n — k — 1. Similarly, since

2%
S D

k-1

o o1 vy 1 n\ ﬁ_ﬁ
}*'(:y)'p =g =1 Z(y)p(] o

B 0

we may find the lower confidence limit by put{i’@g'('?) in the form

S 3
n

) (L) (1 = Py = Flo; ks Lo-h =05
E M 3"

For values of » beyond the rangg}cff the table, the normal approxi-
_mat-ion to the binomial distribgtion may be used to obtain confidence
tervals for p, as is shown imthe following section.

1L.7. Confidence Inter‘iélé;’ for Large Samples. We have seen in
Chap. 10 that for large“samples, the maximum-likelihood estimator 4
for & parameter g inlddensity f(z; 8) is approximately normally dis-
tributed abont famder rather general conditions. When these con-
.dlti”ns ate satisfied, it is possible to obtain approximate confidence
niervals ql%i:&\"asily. The large-sample variance of the estimator is,
Ay, =N

O e = @
vV o*(0) = nE (8% log f(x; 8)/86%)

and we hyvo indieated that it is & function of # since it ordinarily will

depend on g, For large samples, therefore, a confidence interval with

{{ducial Probability v may be determined by couverting the inequali-
les in

&l

g — ¢ —~— 2)
P[—d7<'}—(§<d7]:'}' (
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where d, is chogen so that

a
f.f 1_e—§¢”dt= “y

—dy 2

As an example, we may consider the binomial distribution with
paramcter p; the variance of g is

o (1 —
s2p) = &n—p) 3)
N
An approximate v confidence interval, for example, is c)Egiaa.i{led by
converting the inequalities in N %
P [—d PN Skl BNy } o fN o
TUwpt =i O
fo pob
P [2-1’3;6 +d.2 —d, \/4?111 4+ d.F — 4np? <2}}J
2(n + d\%) AN
< 2np +d?‘2 + d’"r:\‘/zih'.ﬁ‘ + d,t — Anp? =~ (5)
2 + d4%)

These expressions for the li_mi'ts:'fﬁa.y be simplified if we recall that in
dertving the large-sample iiist.i'i’bution, we negleet certain terms con-
taining the factor 1/+/ngiie., the asymptotic normal distribution is
correct only to within €ryor terms of size kjv/n. We may therefore
neglect terms of thif\drder in the limits in (5) without affecting the
accuracy of the gpproximation, This means simply that we may omib
all the d,* in (§),Pecause they always occur added bo a term with factor
n and will ByHegligible, relative to » when # is large, to within the
degree gf\\émﬁﬁi'oxjnlat-ion we are assuming. Thus (5) may be rewritten
as 2 8

W\j}"P[ﬁ e R R BN L —_.P_] =~y ©
QO n n

In particular,

ol A1 — P} GO — )
P —].96\/2_{__ — ) ] 1 | ~ 95
[10 < <p 1960 =~ 95

gives an approximate 95 per cent confidence interval for p for large
samples.
We may observe that (6) is just the expression that would have been
obtained had $ been substituted for p in ¢%(p). This substitution
236
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would Imply that
_Bb-p
VB - p)/n
is approximately normally distributed with zero mean and unit vari-
ance, It 1s, in fact, true in general that in the asymptotic normal
distribution of & maximum-likelihood estimator §, the variance o%(8)
may be replaced by its estimator ¢2(8) without appreciably affecting
the accurncy of the approximation. We shall not prove this faet
but shall use it beeause it greatly simplifies the conversion of inequatiz

ties in a probahility statement to get confidence intervals. a
For large ssmples, therefore, an approximate confidence interval
with sonfidence coefficient + is given hy . O
Pl = dyo(B) <8< b+ dwld) 2y o8 (7)

€4
when § is asymptotically normally distributed, apd cr(;ﬂ in this expres-
&iirm is the maximum-likelihood estimate of the\standard deviation of
8. O
~ 118. Confidence Regions for Large Samples. When s distribution
nvolves several parameters (6, s, * : (i), we have seen in Chap. 10
t-lhab under rather general condit-ion,sj;h’e large-sample maximum-like-
lihood estimates, (8, 8y, - - -, Gpfyere approximately normally dis-
tributed with means (65, 6, - <8, 6) and coefficients of the quad-
ratic form given hy 2
AN\ o |
s _ g bt log fla; 0y, 8y 0 0 0 ﬂk)jl” 1
]':0‘3(81} Ty 80"4\? jl —nk {__h- ai; 86;‘ ” ( )

.The coefficients wi{[,: 'i}n general, be functions of the 6; as we have
Indicated, O

‘Now we hgweéseen that the quadratic form of a k-variate normal
distributionhits the chi-square distribution with & degrees of freedom.
We Wayegnclude, therefore, that the quantity

4 o\’ : 3
o _ A
Noou= 3 S, -, 0006 - 00— 0) @

i=3j=1

13 approximately distributed by the chi-square distribution with &
degrees of froedom for large samples. Here again, the accuracy of the
9pproximation is not impaired by substituting the estimates of the
0: for the g, i o6y, « - -, 8,); the quantity

v = EXg(d, By -, B (G — 6306 — &) (3)
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is also approximately distributed by the chi-square law with & degrees
of freedom.

The variate v enables us to set up a very simple confidenee region
for the 8, If x} . is the 1 — « level of the chi-square distribution,
then

Plo <xis) =~ 4

determines a confidence region in the parameter space. The boundary
of the region is given by the equation AL

SZe(Gy, - 0 0, B (B — 0B — 6) = xF

which is the equation of an ellipsoid in the (1, fs,
with its center at (4, Gz, - - -, o). Z ';

If one is interested in e%mmatmg only a part of &‘i(‘t of & parameters,
for example, the set (61, 82, - -, £,) wherag~< &, we [irst find the
marginal distribution of the maximum-likelhdod (Htlmatcm for this
set. Tf we let (g, b) be indices which hage the range 1, 2, - - -, 7,
then the coefficients °* of the quadiaiit form of the large-sample
normal distribution of &y, és, + - - ,ﬁ vare given by

[ Sl L

where the matrix |[eqd| is ob{amed by striking ouf the last & — r rows

8

()Y | ) space

N
A\

and columns in fjoy;. ‘Ehe’s* will, in gencral, be functions of all k
of the original parame{crs b1, 8y, * © +, 6. If we substitute the s
for the 8; in #%, we Shall obtain the maximum-likelihood estimators

&9 of the 5. TFhe'guadratic {orm

N w=YYe - a6 - )

N
is ap : imately distributed like chi square with r degrees of freedom
andwill serve to determine an ellipsoidal confidence region in the
91\ 93, « + +, b, space for those parameters.

y "Ag an exampie of the estimation of more than one parameter, we
may consider the large-sample cstimation of the mean and variance
of a normal population. We have seen in Sec. 10.9 that Z and ¢* are
approximately distributed with means ¢ and ¢2 and with coefficients
of the quadratic form

] ﬂ'“( 0-2) [
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It we substitete 4% for ¢% in (6), then the quadratic form becomes

i

o
3=7§($—p)2+2&4

o

(5.2 — 0.‘2)2 (7)

which is approximately distributed like chi square with two degrees
of freedom for large samples. In particular, let us suppose that we
have an actual sumple of 100 observations 3.4, 5.1, - - -, 2.2) with

T=YooZz; =4

Ny N
6% = MooZ@: — 1) =35
N ¢
A
Z &\
c Ky
« N
£
—— ‘“ ﬂ

im’\ Fia. 54
£ \J/ 1G. .
N\

Since the .05 Jevel of chi syuare with two degrees of freedom is 5.99, a
93 per cent conﬁden\ﬁt} ‘tegion for u and o2 19 determined by

Pr20(h ~ 17 + 2(5 - o9 < 5.99)] = 95 ®)
- :"\Qt .
Th.e valuey Qf\;u and o which satisfy the inequality in (8) are the
bolnts within the ellipse

~O 2004 — 1) + 2(5 — ¢%)? = 5.99

Whi}h 18 plotted in Fig. 54. This is the 95 per cent confidence region
for the trye Parameter point, say (us, of). Before the sample was
dm“‘n, the probability was about .95 that the region we were going to
0ustruet would cover the true parameter point. )
he large-sample confidence intervals and regions presented in this
anfi the Preceding section have an optimum property which we shall
PO oyt byt pot prove. In the earlier sections of the chapter, we
Were Soneerned with finding the shortest interval for a given fiducial
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probability. Thus the shortest 95 per cent interval for the mean of 5
normal population when o i known is given by

P(_—1—79—&'<u<f+£6q)= 95

1 n

and the length of the interval is 2 X 1.960/ /71, where n i the sample
size. Now let us suppose that, instead of using # = (1) Zx; to con-
struet the confidence interval, we used only one of the ohscrvations,
say the first. The estimator is simply A

ﬁ:xl .\

and the confidence interval is given by

P(i — 1.960 < u < i + 1.965) = 98
which has length 2 X 1.96¢. This interval i3 \/‘%\t}mes as long as lhe
one obtained by using the sample mean as tha pStimator.

Tt is now evident that the length of a c.o;hﬁti‘eflce interva! for a param-
eter depends strongly on what functigpl the sample ohservations 18
chosen as an estimator. The optimilm property of the large-sample
intervals and regions based on masdmum-likelihood estimators i this:

Large-sample confidence fintgmidlé and regions based om marumum-
Likelthood estimalors will be ,gm;ﬁler on the average than tntervals and
regions determined by any other estimators of the parameters.

This property of maximurn-likelinood cstimators is closely related to
the fact that they fééfficient, i.e., that they have smaller variance in
large samples thasolher estimators. By “other cglimators’™ we mean
funciionally dilferent estimators; one would obtlain essentially the
gaING conﬁgl{nﬁe regions by using cslimators which were functions of
the maﬁmﬁm—hkeﬁhood estimators. The phrase “on the average”
refers ctovthe fact that confidence regions usually vary in size from
sample’to sample (see Fig. 48), and for a given sample a region deter-
_ ”n}i“ﬁe’d by some other estimators may be smaller than the region
Ndetermined by the maximum-likelihood estimators. But for I'EBPCE‘*Wd
sampling, the average size of the regions determined by maximum-
Tikelihood estimators will be smaller than the average size of regions
determined by other estimators,

11.9. Problems

1. Find a 90 per cent confidence inlerval for the mean of a normal
distribution with ¢ = 3, given lhe sample (2.3, —.2, —-4 —.9).
What would be the confidence interval if ¢ were unknown?
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2. The breaking strengths in pounds of five specimens of manilla
rope of diameter 3{g inch were found to be 560, 480, 540, 570, 540.
Estimate the mean breaking strength by a 95 per cent confidence
Interval, assuming normality. Estimate the point at which only 5 per
cent of such gpecimens would be expected to break.

3. Referring to Prob. 2, estimate ¢% by a 90 per eent confidence
interval: also s,

4. Referring to Prob. 2, plot an 81 per cent confidence region for
the joint estimalion of p and ¢2; for u and . y

8, Tive samples were drawn from populations assumed to\be
normal and szsurmed to have the same variance. The val@es of
s = E(z: — %) and #n, the sample size, were O

S
27N

% 40 22 17 42 45 \ 3
n: B 4 3 7 8 i ‘\g'
Find 98 per cent confidence limits for the cormmeh wariance.
6. The largest ohservation ' of a sample g){\{b from a rectangular
density f(z) = 1/6 (0 < 2 < 8) has the den%ﬁy.

g1 AN
F@) = ”(9’92 O <

Show that 4 = 2 FUBT distributqd‘fﬁ'ﬁependent-ly of 8. Using u, find
the shoriest confidence intervalfor 8 for fiducial probability 7.

7. Compute & 95 per comh confidence interval for the range of a
rectangular distribution g{{m the sample (2.6, 1.2, 4.3, 1.6), and given
that the lower limit of thet rangs is zero. .

8. To test two pfomising new lines of hybrid corn under normal
farming conditions, @ scod company selected eight farms at random in
If?Wa and planté@Both lines in experimental plots on each farm.  The
yields (Cﬂnw\fié& to bushels per acre) for the eight loeations were:

dhedise s s @ s e mom

L (NUner:30 79 58 91 71 82 T4 66
W“ﬁing the two yields arc jointly normally distributed, estimate thd

ifference hotsween the mean yiclds by a 95 per cent confidence interval.
Refer 6 Prob. 22 of Chap, 10.) -
% Using the density

43
flx) = - 0 <z <8
for the largest of four observations from a rectangular population, set

U0 & general system of 95 per cent confidence intervals for 6 by finding
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the functions k(8) and %:(8) and plotting Llhese in the (8, ) plane.
Find the interval for the sample given in Proh. 7. Why does it differ
from the interval found in that problem?

10. Referring to Prob. 9, plot the functions 2(d) and hs(6) for
samples of size eight, Then show in general that vhe lengths of the
intervals decrease as the sample size n increases

11. The sample (2.3, 1.2, 0.9, 3.2) was drawn from a population
distributed by f(z) = ee~*, x > 0. Find a 90 per cent confidence
interval for a. ~

12. Referring to Prob. 11, find 90 per cent confidence intérvals for
the mean and for the variance of the distribuiion,,{What is the
fiducial probability that both these intervals cover {h€friie mean and
true variance, respectively? A\

138, One head and two tails resulted when g Boin “was tossed three
times. Find a 90 per cent confidence intervaktor the probability of a
head. !

14. 160 heads and 240 tails resulted frede’400 tosses of a coin. Find
a 90 per cent confidence interval fordht probability of a head. Find
a 99 per cent confidence interval. MDes this appear to be a true ooin?

15. A sample of 2000 voters\were asked their aititude toward 8
certain political proposal. 1200 favored the proposal; 600 opposed
it; and 200 were undecided.’ Assuming this was o random sample
from a trinomial population, construct a 95 per cent coufidence region
for p; and p,, the prdportions of individuals for and against the pro-
posal. (Use thezésults of Sec. 10.9.)

16. Plot a 95, pér cent confidence region like that of Fig. 51 for the
example ugadin Sec. 8 and compare it with the region of Fig. 54.

17. In,‘Kegrate by parts [integrating (1 — ¢)* and differentiating ¢1

to show {

f%’t\(lu d L L_[” e
3 U — brdt = — T — &+ T r—1(1 — Tt

s ) P RS l+s+1ﬂ{ (

.  18. Apply the above result repeatedly o obtain a cumulative form
for the beta distribution, F(z; «, ).
19. Show that

F(z; o, 8) = (a + f + 1) Tl — )t
Tmatl

b}f using the result of Prob. 18, This is the form that would P’We
arisen had the integration by parts been done the other way—differ
entiating (1 — {)® and integrating .
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20. Given a sample of size 100 from a normal population with
&= 3,¢* = .25, what is the maximum-likelihood estimate of the num-
ber & for which :

[T o s = 05
« Vome

21, Find the lrge-sample distribution of 2 and 4 for saraples from a
normal population.  Since it is known that & and ¢ will be normally
and independentiy distributed with means 1 and o, it is only necessary
to find their variance. Q

22. Referring to the above problem, find the large-sample distzibb-
tion of g + L4 where £ is a given constant. Use this to obtain & 95 per

cent confidence interval for « in Prob. 20. « M
23. Develop n method for estimating the ratio of the ganjances of
two normal yopulalions by a eonfidence interval. ‘¢

24, Develop a method for estimating the para-meﬁe);\af the Poisson
distribution by a confidence nterval. {Refer to Pyob. 33 of Chap. 6.}
25. Work through the details of the del'iva-pigi}of equation (2.6).

26. What iz the probability that the lengthleta ¢ confidence interval
will be lose than ¢ [or samples of size 2070\

27. Compare the average length of 3,85 por cent confidence interval
for the mean of & normal popu]ati(}n:{based on the ¢ distribution with
the length {hat the interval wouldbidve were the variance known.

28. Show thut the length and the variance of the length of the ¢
. confidence interval approachﬁero with increasing sample size.

29, How large samp e(ﬁcnfst he drawn from a normal population to
make the probahility .QSKthat a 90 per cent confidence intervat (based
on £} for the mean willhave longth less than o/57

30. Show that jél‘gﬁength of the confidence interval for ¢ {of 2 normal
bopulation) appioaches zoro with inereasing sample size,

3L Consi\ckina’ truncated normal population with density

™
S

Y. .\" 3 f(.’,(;) - _“__1 g_}é(,,,_,“}xms T < a

PN \/Q;r_'mx

Whe}e 4
o = @ 1“_ g Yite—wiret o
— \/_ 2% ¢

Show thas é% log f(z) and 3@_ log f{z) have zero expectations.
T

32. Referring to Prob. 31, let 2 and 4 be maximum-likelihood esti-
ators of 4 and ¢ Show that the matrix of coefficients of the quad-
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ratic form for the large-sample distribution of & and ¢ is

m(l — th — b?) —nb(l + &+ )l
o’ o ‘

Nloailt = R _ "
—nb(l + 4+ ) w2 — b — £ — D)

a? gt

where b = of(a), and where { = (a — p)/o.
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CIJAPTER 12
TESTS OF HYPOTHESES

12.1. Intreduction. There are two major arcas of statistical infer-
ence—the estimation of parameters and the testing of hypotheses. Wes
shall study the second of these two areas in this chapter. Our aim
will be to develop general methods for testing hypotheses and to@pply
those methods to some common problems. The methods jwil:I‘ be of
further use in later chapters. N

In experimental research, the objeet is somotimes melzef\y to'estimate
parameter.  Thus one may wish to estimate the yield“of a new hybrid
line of corn.  But more often the ultimate purposewill involve some
use of the estimate. One may wish, for exg,r;ﬁ)}é, to compare the
vield of the new line with that of a standard Jiné and perhaps recom-
mend that the new line replace the standard ¥ne if it appears superior.
This s & common situation in res¢archy) One may wish to determine
whether a new method of sealing lghi Ditlbs will inerease the life of the
bulbs, whether & new germicide iz i‘ﬁore effective in treating a certain
inlection than o standard germieide, whether one method of preserving
foods is helter than anothepiﬁ so far as retention of vitamins is con-
cerned, and so on. ¢ <

Using the light-bulh ex\a,mple as an lustration, let us suppose that
the average life of huihe made under & standard manufacturing pro-
cedure is 1400 ho 1‘«,\ Tt is desirved to test a new procedure for manu-
facluring the bulBs, The statistical model here is this:. We are
dealing m-'ith&w'o populations of light bulbs—those made by the
standird Pl'?t:)(:ess and those made by the proposed process, We know
(_fm"},, mmilerous past investigations) that the mean of the first popula-
bon(is\whout 1400, The question is whether the mean of the sec?nd
Populition is groater than or less than 1400. To answer this guestion,
We set up gl hypothesis, namely, the hypothesis that the two means
2te the same. On the basis of & sample from the second population
Wwe shall eitliar aceept or reject the null hypothesis. (Naturally W@_hOPE
th-at the new process is better and that the null hypothesis will be
‘@ected.) The reason for this roundabout way of doing things will

feome apparent later.

N
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To test the null hypothesis, a number of bulbs are made by the new
process and their lives measured. Suppose the mean of this sample
of observations is 1550 hours. The indication is that the new process
is better, but suppose the estimate of the standurd deviation of the
mean ¢/+/n is 125 (n being the sample size). Then a 95 per cenf
confidence interval for the mean of the sccond population (assuming
normality) is roughly 1300 to 1800 hours. The sample mean 1550
eould very easily have come from a population with mean 1400. We
have no strong grounds for rejecting the null hypothesis. . If\on the
other hand, ¢/+/n werc 25, then we could very confidently reject the
null hypothesis and pronounce the proposed manufa}(:\m‘ri}lg proeess
1o be superior. \ o

The testing of hypotheses is seen to be closely related to the problem
of estimation. Tt will be instructive, however i@ develop the theory
of testing independently of the theory of edfimnation, at least in the
beginning. \

12.2. Test of a Hypothesis against =Q§‘S’ing1e Alternative. In the
example considered above, there wei’e\many alternatives to the null
hypathesis; the mean of the secoﬁéi’ population could have been any
positive number within a fairlftwide range. To introduce the basic
notions of testing hypothcsedwe shall consider the very simple case
of one alternative. Suppdieé it is known that a population has either
the density f5(z) or the(density f1(z), and suppose it is desired to test
on the basis of ongi'obgervation whether the true density is folz) of

f1(x). Let us designate by

75N Hy: the hypothesis that f(z) = folx)
and by ::.\

A\, the alternative hypothesis that f(z} = fu(x)

Wc}éha]l call 7T, the null hypothesis; rejection of H, will be equivalent
Apwaeceptance of Hi.

\"\3 “ To test Hy, we shall choose 2 number 4 (sce Fig, 55) and make an
observation z:1. I x, < A4, we shall accept I; if 21 > 4, we shall
reject Hy.

There are two kinds of error possible in this fest, Weoe may reject
H, when it is'in fact true; i.e., the population may have fo(z) 28 its
distribution even though the observed z did exceed A. This is called
the Type I error of the test, and for the example of Fig. 55 its probabﬂ'
iy is obviously

[ F@i
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TEST OF A IYPOTHESIS AGAINST A SINGLE ALTERNATIVE §12.2

This probahility is often called the significance level of the test.” A
second possible error is the acceptance of Hy when it is false; i.e., the
obgervation may be less than A even though the true population dis-
“tribution is fi{x). This is ealled the Type 11 errer of the test, and in
- the example we are considering its probability is

[7. fwan

The mterval & < 4 is called the accepfance region for the null
hypothesis, and the interval © > A is called the rejection region, ot .
move often the eritical region. The construction of a test is nothing

- . . . - . . . N .
more than a malter of dividing the z axis into two regions, and this
2NN ¢

%K)

Fia. 55, O
may be done quite arbitrarily. We m,iglit“ sot up & test as follows (see
Fig- 55) . N

Accept: Hy 1t x< gorz >b

Reject Hy e <z<b _

This is clearly a poorer test than the one deseribed first. We may
© make the two tests comparable on one score by making the probabili-

T: of their Type I effers the same, say .05; i.e., 4 may be chosen so
t £ . o0 g

<
> [ e =
N\ .{A Fo(w)dz 05-
and g and.}i\t\sh.osen g0 that
A N j;b fo()dz = .05

Th}‘sﬁperiority of the first test 1s then appai‘ent in the Type 11 errors,

f_i, Jiu(z)de < [jw Filz)dxr + _'!;af1(ac)dx

The second test is much more likely to accept Ho when it is false.

A good test ig clearly one which makes the probabilities of both errors
5 small a5 possible. However, it is impossible to reduce both_ errors
Stmultanecusly with o single observation. The common procedure is
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§12.2 TESTS OF IYPOTHESES

to fix the Type I error arbitrarily (make if have probability .05, {or
example) and then choose the critical region so as fo minimize the
probability of a Type 11 crror. The quantify

1 —~ probability of a Type 11 error

iscalled \he powevegthetest. The power of the first test (based on the
intervals £ < 4 and x > A) we have deseribed s

1— f_‘*m f@)ds = L_w Felw)dz ~

_ Tn terms of this conceept, the prineciple for setting up o test {5506 fix the
probability of a Type 1 error and then ehoose a ciilicul fogioll so as to
maximize the power of the test. ' A\

Returning to the example of Fig. 55, we can noyv'ﬁbi; dp the best test
of the null hypothesis for given size of the Typehciror. Suppose we
wish the Type I crror to have probabilityNd§Y Our problem is to
divide the 2 axis into two regions (two inigevals or two eollections of
intervals), one of which will be the acgeptance region and the other
the critical region. We may concomtiate on the critical region, and
having selected it, the remainder ‘of the axis will be the acceptance
region. Thie critical region is tojbe'éuch that the arca wundor fo(x) over
the critical region is .05, and jéj;:t;h that the power will be maximized,
i.c., such that the area under'fi(z) will be as large as possible over the -
critical region. Q

Certainly the critigal#egion will include every x to the right of z = i,
“the upper limit of\thie range of fo(x). We can include still more of the
area under fi{x}Ae’long as we do not make the area under fo(z) exceed
05, The bes’t\values of # to choose are obviously those for which
fi{zx) is as.{&?g“e as possible relative to fu(z). We want fi(x) to be large
50 t-ha-t\\txhe‘area under f1(z) will be Jarge, and we want fa(x) to be small
go that as much of the arca under fi{z) can be included as possible

vgiﬂjloht taking in more than .05 of the arca under fo(z). The best

N

_ \critical region is clearly the interval z > A where A is chosen 80 thak

f;’ fo(@)da = .05

Other best tests would be determined by changing the specification

of the probability of the Type I error. In the present illustration, for

example, the Type I error could be made zero, and the best eritical

. region would be z > d. This is the test one would make if he wer¢

particularly anxious to avoid rejecting H, when it was true, but was
248 -
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noft greatly concerned about rejecting /7, when it was true. To refer
back to the light-bulb iNustration, Hy may refer to the standard manu-
. fasturing process.  One would not want to go to the expense of chang~

ing the proeess unless he was rather certain the new process was
superior.  Of course, such a decision as this would not ordinarily be
based on one observation in practice,

The genera! method of setting up critical regions in the case of one
alternative is quite simple.  Suppose we are testing H, against H, as
before.  The inequality

fol@) ¢O)
where I is an arbitrarily chosen number, will be satisfied }ly:}zerisain
valtes of x.  These values of z form a eritical region for a besi ‘test, the
test for which the Type [ error is given by integrating folx) over the
region. Thus in Fig. 55 if we choose o)

04 N0
FTRE T,

the set of values of 2 for which (1) is satisfied Is just thesetz > 4. Dy
reducing &, wo would get another sebvof z values, & > A', where A’
would be sowe number to the leftval A, The test would be more °
powerful (would have greater probability of accepting A; when it was
firue) but would have largor probability of a Type L error. By chang-
g &, the probahility of g~Fype 1 error may be made to have any
desired value, A genL\Kéyl “eriterion for constructing tests may be
stated thys: N\ : _

To set up.a best 1688 Tor a given probubility o of ¢ Type I ervor, one
chooses as a eritipglbegion the sel R of points « such that:

'\
AN filx) > kfolz)
Where f ts3lected so that: :
~O fR foln)de = a

h
3

. ~
A o R

This eriterion refers to a test for a single alternative Hy and z_a:_sjng_le
observation. It is almost ohvious that the given method of choosing £
U maximize the power of the test. A formal proof would go some-
what ag follows: Consider the possibility of replacing a soall interval
42" gbout a poing 2 in R by an interval Az'’ about a point =’ not i &. .
We may think of R as the interval = > 4 in Fig. 55) Let the
length of Az" be go chosen that the probability of the Type I error s
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unchanged by the replacement, i.e., 3o that approximately

@A = fula)aa’
The substitution will decrease the power by about fi{z)Az’ and
increase it by about fi{z”YAz”. Sinece &’ is in T2,

Nlzax” > Efu(z’)az”
and since 2’/ iz not in R,

fl(,nf!)A,vh' < ;‘)fu(x.l’f)AIf(

The right-hand sides of these last two expressions are Lquﬁ,} hcm ever;
hence ) O

Sile'NAx" < filzAz’ ‘;“f;,
and any such replacement would necessarily red&x the power of the
test.

Q)

N Tre. 56,
To illustrate the pictod f111‘r11e1 we may consider ihe sifuation in
Fig. 56. A crit-ical region for & == 14 is given by the interval
P \% a<az<h

The co respondmg acceptance region ig, of course, the pair of mter—
vals 2 &Qe and > b, The test has fairly high power in that Ho will
often he rejected when Hy i is true, but its Type L e‘r‘l or is large. If we
c.hobse a test with small probability, say .05, of a Type I error, then
\thr(, critical Te gion would hecome ¢’ < % < b', and the null by pothems
‘would be accepted 95 per cent of the time when it was true.  Bub now
the power of the test is sraall; Hy will not often be rejected when it is
false, i.e., when 7 is true. The power is, however, as large as it ca
be made for the given probability of a Type 1 error. This situation
can be improved by taking more observations; we have been consider- -
ing only tests based upon & single, observatlon
- When a test is to be based on a sample of several chservations, the
construction is essentially the same as that we have already examined.
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Supposc a sample of two observations is to be used to test H, against

Hl The sample density is
f(z1)f (2s)

defined over the i, 22 plane. A test is defined by selecting a critical
region K in the plane, accepting H, if the sample point (%, 2) falls
outside &, and rejecting H, if the sample point falls inside B, Here
again the be'-;L test is given hy selecting R to be the set of points (2, 22)
such that

fl(-«"il)fl(xz) > & O

Folm0fo(za) O\
A / \j\

) FIG 57

The probablhty of 5 Type I\err or is
\}‘ [ fteoitaddz das

and for that pr{)babllnv the power of the test
\.@’:' [ [ e des s

is mammlzed
Tha gencralization to samples of size n is immediate. The sample
0 'Squa,tlons Xy, e, * + -, 20 may be plotted as & pointin an n—dlmen—_
sional space. The space is_divided into two regions—the _critical
Tegion ® and the acceptance regwn If the sample point falls in R,
p ig rejected; otherwise H, is accepted. The best eritical region R
will consigt of those points (z1, %, - - - , &) ik the n-dimensional

Space for which the Iikelihood ratio

Hleflms) - - - filza)

Fom)fols) « + « Sol@n)
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exceeds some number &, and % is so chosen that the test has the desired
probability of a Type I error. fl‘his probability iz, of course,

| [f C ffo(x1)fo(:z:2) o foleaday dzs - - v das
B

We shall not actually have to deal with n-dimensional spaces because
we shall be concerned with tests of parameter valucs and such tests
can often be based on the distribution of an estimator of the paramcter.

12.3. Tests for Several Alternative Hypotheses. A commen prob-
lem in testing hypotheses is that of testing a particular, pbrameter
value, say fy, against a set of other values of 8 for a familynef distribu-
tions f(z; ). Tho hasic ideas may be iltustrated, By a particular
example. Suppose a population is known to have/@normal distribu-
tion with ¢2 = 1, and suppose it is further knogﬁ*that- the mean p i3

Flxip)

PANY Vig. 58,

,‘NY
greater than or garl\x\al to some given number go. On the busis of an
observation «,xe’shall test the null hypothesis,
N\
\“ o Hotp = (1)
The aﬁ\ér\ﬂétives to this hypothesis are all the values u > go. O the
bagighof an observation @, we shall aceept Ho (state that » = po) OF
reject 11, (state that 4 > po). We shall require a test for which the
<‘§)rf)bability of a Type I error is, say, .05. .
If a particular value x’ of g is considered, the best test of wo against
that value is given by choosing as & eritical region the seb of points for
which

Fes 1) > Kz o) @
or, using the specific form of the distribution, '
1 . 1 3)
1 ot s I (
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After canceling 1/+/27 and taking logarithms, this inequality may be
put in the form
2log & + p'* — u2
4
2= wo) ®
The best eritical region is, therefore, an interval 2 > A4, and 4 is to be
chosen so that

x >

L ) :}Q—} e HEw dp = 05 (5,)
The value of A is determined from the normal tables to be N )
A =+ 165 A
in the present example. It was, of course, to be expecte&'%hat the

eritieal region would be of the form z > A. v

An important thing to observe here is that t-he.%?ifical region is
independent of the selocted value ¢, Any valuedsfi greater than g,
would have given rise to exactly the same inﬁie’al region, For we
should have found that the best critical regio‘ﬁ, Was of theformz > 4
regardless of the value given ', and the defefmination of the value of A
depends only on u, and the selected prabability of a Lype I error,

We shall sec later that this is not & Beneral situation. Tt is not in
general true that the inequality R

fa@ > Hi(ws 60

will give rise to the sa e: efjtical region.for all possible values of &
alternative to g value N, specified by a null hypothesis. When it is
true that all altern&@i{rés give rise to the same critical region, the tesé
1s called g um.z'fom@iy most powerful test,, We shall see that vniformly
o8t powerfulpests do exist for many important problems in statistics,
while there {Q\é"bther equally important problems whieh do not have
tniformly, hiost powerful tests.

Going\Back o the prohlem of testing wo agaiust all g > uo, let us
omider the power of the test for a particular value of u.  The power
15 the probability of rejecting H, when it is false (when the true mean

88> o) and is given by

© 1 :
b Meet gy -
[ =

This Quantity will elearly be a function of u; it will be denoted by F(u)
nd will be galied the power function of the test. When the frue mean
: 263
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" i is far to the right of u,, the power will be ncarly one, while when

i near uo, the power will be small; at ¢ = g the power becomes equal
to the Type I error, the probability that x falls in the critical region
when u = po. The function iz plotted in Fig. 59.

In view of the faet that the test we arc considering is a uniformly
most powerful test, we can make the following statcment about its
power function: the power function of any other tesi with the same
probability of a Type I error will lie entirely below the curve of Fig. 59
(except, of course, that it will have the same value at us. The gEneral

Pla) A
2
7\
.G
005 - \
- Mo o A

oy T 59.

problem of studying testé san be set up in terms of the power function.
For one parameter We“’ﬁay consider the test of the null hypothesis:

‘\ Ho:fj:eo

for the parawteter of a density fiz; 6), where the possible values of ¢
lie in somepimierval which may be finite or infinite. In Fig. 60 are
plotted geyeral power functions for fixed Type I error. If a test exists
whickhas a power function such as Py(6), then we have a very ﬁ’}e
tesfiindeed, and it can be shown that such tests can be obtained 1o

wsge}lefal for large samples. For small samples, power functions are
Numore likely to look like Pa(6) and Ps(8). And generally speaking

there will be no absolute eriterion for choosing between tests. The
test represented by P»(6) is better than that represented by Ps(6) for
9 > 6oand fora < § < b, But the test represented by P5(8) is better
for 8 < a andb < 8 < @,

The situation just described is typieal. It will be possible to set Up
tests which are best for certain alternatives to Ho but which are poo¥

for other alternatives, and other tests will be better for these other
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<MPLE AND COMPOSITE HYPOTHESES §12.4

alternatives. The choice of a test must depend on the particular
problera at nand and on the end one is most anxious to gain by the
test. Thus, for example, if one had to make a choice between the two

tests represented by a(6) and P3(6) in Fig. 60, he wc_ni_]('l choose P3(6)

ithe wanted to be fairly certain to reject Ho when & was quite far from
B_{, in either divention. But Pa(f) would be chosen ii he were particu-
larly concerned with the alternatives 6 > fo.

We may mention here that an wnbiased test is one such that it

ower funclion has a minimum at 8 = fe. The test represented by
Pa(8) is bissed, There are values of 8 {(just to the left of o) fors
which the probability 1 — P(#) of accepting the null hypothesis 1%
larger than for the nuil hypothesis itself. (\)

P8 R ¢ . ¥
X

AN

1 N\
i 28N
i 7
3 oy
| _
i N\ 4
1 £ h
1 & be
i N
] N
! R Y
; R
‘! IN>
| @ b LN b g
p \‘ Fra. 60. :
a\

12.4. Simple and)Gomposite Hypotheses. We turn now to hypo-
theses involvin (stributions with several parameters, and we may
consider the.galéfal density fz; 01, 8 " ° ° 2 8. The disfsrib_utfon
may have 'b}és\féral variates z, 4, % * " ° without in any way changing
the ensiing development. The parameter Space with coordinates
B 845", & will be denoted by the Greek letter . A particular

tibution in the family of digtributions will be represented by 2
point in ©. Thus if numerical values Bu0, O30, = * o Oko BTC 'Stlb.."‘:tl-
tuted for 8, 8, - - - , 6 0 J(@5 01 s, * * T s g), o specific distribution
function is determined. The numerical values (f1o G20, 7 ° 7 s fxo
‘May be thought of as the coordinates of & point in & i-dimensional
space. Thus the family of normal distributions with,

1

14z}
Fles w 0D = 5 63%‘ /)
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may be represented by the upper half plane of Fig. 61. The coordi-
nates of any point in the planc determine a particular member of the
family. This upper half planc is € for the given family.

A simple null hypothesis is one which states that a distribution is ono
specific member of a given family. A eomposife null hypothesis is
one which states that a distribution belongs to gome subspace of the
© parameter spacc. We shall be primarily interested in subspaces of

Q!
#==5
B4
. {6.4)
AN
5 -4 -3 -2 - o ANV 2 3 4 s 6 A
Eiy. 61. '

lower dimensionality than thaitzﬁf 2. Referring to the two-parameter
family of normal distributions, the null hypothesis:

”“Ho'j.!,= g =2

is a simple hy potP\ Al becauqe it completely specifies a single distribu-
tion in the farmly The null hypothesis: '

p '\ } Hyip = -5
is satlsﬁed bv all digtributions with mean —5 regardless of the value of
e2; thlﬂnu]l hypothesis selects a subspace (the line g = —35) of the
' parampéter space and is a composite hy pothesis.  Similarly

.‘\’.

. 2
- Hyp=-3+%

is 8 composite hypothesis satisficd by all distributions with parameter
values which satisfy tho given velation.

Of course a simple hypothesis which selects a single point of the
parameter space may be regarded as a specinl case of a composite
hypothesis, because a point is a subspace; we shall use the word cem~
postfe only when the subspace has more than one point. The symbol
« will be uzed to designate the subspace determined by the null
hypotheblb whether it is simple or composite.
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For a general family of distributions f(z; 8y, 6, - -+, 6), 2 null
hypothesis will state that the actual distribution belongs to some sub-
space @ of the complete parameter space Q. If » is 5 point, the.
hypothesis is simple; otherwise the hypothesis is composite. ;

/125, The Likelihood-ratio Test and Its Large-sample Distribution.
There are many ways to set up tests of hypotheses, and the best tost
in any given situation depends on the form of the distribution function
and what alternatives are cqnsidered to be of primary importance.
We shull not he able to study all the various methods of constructin
tests but shall ¢onfine our atténtion to one methad which usually ledds
to & very good test, O\ -

The likelilwod-ratio test is closely related to maximum-}ikeliKood
estimation and to the ratio test described in Sec. 2 for & sjgg[é‘ alterna-
tive. Eet oy, @y -+ ¢, 2, be a sample of size » from s population
with density fix; 81, 62, - - -, 8). On the basis_of&his sample it is
desired to test the null hypothesis: N4

Herfla; 0, 82, - - -, 80 belongs torthe\s\ri)space wof Q
&

The likelihcod of the sample is WO

[ o 0,08« -, ) )
1
The Ikelihood as a function of "E-]ie parameters will ordinarily have a
Maximum ag the parameters are allowed to vary over the entive
parameter space Q; welghall denote this maximum value by L(8s, 8,
""" 8i) or more bripfiy by L({). _In the subspace «, L will also have
4 maximum value which we shall denote by L(#). The likelihood ratio
15 the quotient Q{these two maxims and is denoted hy

N\
O L@
N ML

L:

i

I =

2)

™
&

Thia\qi?aﬁtity ig necessaril itive fragtion; L is positive because
kY & v a post ;
it hm‘pmduct of density functions, and L(¢) will be smaller than or at
Most equal to L($) because there is less freedom for maximizing L in o
thanin 9. The ratio » is & function of the sample observations only;
't does not involye any parameters. The range of the variate X is zero
&0 one,
An Mustration will reveal the logie of using X as  test criterion.
®t the family of distributions be the one-parameter family of normal
slributions with unit variance, and let the sample consist of 7 obser-
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§12.5 TESTS OF HYPOTHESLS

vations 231, Zs, * * * , Za. We shall test the null hypothesis
Ho: Ho= 3

that the population mean is actually three. This point is «» while the
whole p axis iz £. The likelihood is

= _1_)n Y2 zi—u)
V2
which may be written

1 \» A\
- — e—}ﬁﬂ(z;—!)'ﬁ‘—(n}?) (F—p)? 2 AN
\/211“ N\ ©
N

The maximum value of this quantity in 2 s, of ¢ our‘-,e g,wﬂn by putting -

p = ¥ to obtain
0 LY Nl
L = e | T
©=(7s) R
Sinee in this example w is a point (the nulI’ hypothesis is simple}, there

is no opportunity to vary " and the Iargést value of I in « is simply its
only value

»,’

1 N “
L&) = ( :) e~ HB )y — (n/2) (3—3)

2r
Vi

The likelihood ratio is t{}én .

s R )
(NS h = et -

X\
If z happens to(be quite near 3, then the sample iz reasonably con-
smtent with Hg/and A will be near one. If  is much greater than or

less than g»'\the sample will not be consistent with Ho and \ will be
near zero,)

Clea\iy the proper ecritical region for testing H, is an interval

~O . 0<a<4d

9
where A is some number (less than one) chosen to give the desn’ed
control of the Type I crror,

This example illustrates the general situation. If the maximuro-
likelihood estimates fall in or near ¢, the sample will be considered
conﬁlbtent with H, and the ratio X will be near one. If the estimate
{8y B3, - - -, ) is distant from w, then the sample will not be in
accord With iy o and A will ordinarily be small. The critical region for
A will always be an mterval of the form 0 < A < A. The number A
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will be determined by the distribution of X and the desired probability
of a Type [ ervor.  If that probability is to be .05, for example, and if
the density of X is g(A) when H, is true, then A is the number for which

j; 4 g = .05

In order fo prescribe the critical region for A, it is necessary to know
the distribution of A when H, is frue. If H, is a simple hypothesis

[w is & point {frq, Bz, - * , o), for example], then there will be a .
unique digtribution determined for . But if H, is a composite, there

/

{

may or may rot be a unique distribution for A. It is quite possibld \d

that the distribution of A may be different for different parargéter
points in w, and in this case A will not be uninuely determined\ To

specify a test, it is necessary to add further arbitrary criteria tito the ™

method of constructing the test. :We shall not investﬁgz{te these
problems; we merely wish to observe here that the Jikelihood-ratio
method as far as we have deseribed it does not alwaysiead to a unique
test, R

As is usually the case for large samples, a Y{,&fy\satisfactory solution
to the problem of testing hypotheses existg'when one ig dealing with
large samples.  The solution is based oy $heorem which we shall not
be able to prove because of the advanecd character of its proof:

If a density function f(x; 61, 6, R " 8,) satisfies condilions like those
enumerated <n Sec. 10.8, if the dimensionality of Q #s k, and if the dimen-
sionality of w is r < &, then <@log A is approvimately distributed like
“thi square with & — ¢ degreesof freedom for large samples when Ho ts true.
Since —2 log A increases ad » decreases and approaches infinity as X
approaches zero, the cfifteal region for —2 log A is the right-hand tail
of the chi-square @ietibution, Therefore if we are dealing with &
large sample and \?’iéh to test a null hypothesis with probability 05
fora Type ¥ excon, for example, it is only necessary to compute —2log »
and compardJt with the .05 Jevel of ehi square; if —2 log A exceeds the
c&'ﬁ“%@lﬁw&l, H, would be rejected ; otherwise Hg would he aceeptf;d. _
‘42-5\ Tests on the Mean of a Normal Population. The foregoing
ideasharo vrel] llustrated by a very common practical problem-—that
of festing whether the mean of a normal population has a specified
value. - We shall suppose that we have a sample of n observations,

..":;, Ty oo v 2, from a normal population with mean g and variance
7 We wish to test the null hypothesis:
Heip = o @

where p i 5 given number. The parameter space £ is the half plane
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of Fig. 61. Thesubspace & characterized by the null hypothesis is the
vertical line p = po. ’
We shall test Hy by means of the likelihood ratio.  The likelihood is

L_ — (7%]_ ;)ﬂ !cj_}ézli(Ii—#}/U']H (2)

We have already seen that the values of u and ¢* which maximize L.
in @ arc

| N
ﬂ=;2x¢=:§ \t\
s 1S e ay d{)
T . (N
Substituting these valucs in L, we have " m'\'(’
R 1 na’2' }
Ly = [(%;n)z(:ﬂs —@?ﬂ’ o @

To maximize L in o, we put g = o, audrthe only remainiag parameter
is ¢2; the value of ¢* which then mgximizes L is readily found to be

A
0'2, ,;&'z (x; — po)?

7

which gives 2\
:‘"‘t 1 n_)rz
W | —{ns2) 4:
L@ | Gy =t = ,uu)'z] ’ @
The ratio of Q@}t"o (3) is the likelihood ratio:
,'\.": . JE PPV
¢ 2 (s — x)'} :
N A= ST (5)
A [z(:c‘- = )"

Ourt .j’lext step is to obtain the distribution of A under H, and use that
Mdi%ribution to determine a number 4 so that the critical region
N8 < n < A will give the desired probability, .05, for example, of reject-
ing H, when it is true.

1t happens that the distribution of X is easily obtained in this ease.
The sum of squares in the denominator of (5) may be put in the form

' E(IL - ].(,0)2 = 2(3’,‘.; - .'1_3)2 + ﬂ(f — #0)2

so that A may be written

(6)

~ { ne
_h T AT E — w2 — 9?)2]}
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We may recall (Sec. 11.2) that the fraction in the denominator is just
52
n—1

where ¢ has the ¢ distribution with » — 1 degrees of frecdom when H,
istrue. To obtluin the distribution of A, we need merely to transform
the ¢ distribution by the substitution

IT_ LIV
= {F TG 1‘1‘)‘1} @,

It is not necessary actually to obtain the distribution of X, béchuse
it is 4 monotonic function of #2 and the test can be done justyas el
with £ a5 4 eriterion as with A, Since £ = 0 when M&°1 and £2
becomes infinite when A approaches zero, a critical regibﬁ of the form
0 <X < 4 is equivalent to a eritical region #2 > B-where B may be
deterwined {rom 4 by equation (7). The cridital’ values of £ are
therefore the extreme values either positive onnegative, and a .05
eritical region for ¢ is the pair of intervaly & “

t < —tg; and  CF> to

where 1,05 is the number for which (O

fwf(t;-ﬁ'; L)t = 025 (8)
Lo \

It m — 1) represenii '\it-h’e ¢ distribution with #» — 1 degrees of
freedom. The test .OF%TG may therefore be performed as follows:

%

We compute the quantity
,\" v/n(n — 1){Z — pa) (9

Q" A B — E)?
I "\ . . .
1 it lies batween —£ 5, and t.05, My is aceepted; otherwise Hy is l‘elf%cted-
It IsWorth while to observe the connection between this test and the
coﬁﬁﬁﬁﬂe-interval estimate of the mean. Supposing the mean of

t}}? opulation sampled 1o be u/, a 95 per cent confidence interval for
& 15 Just the set of values ¢ for which
—tgs < Vil — D E = w) g (10)
Vi@ - 5 _

Hence the test of 77 o is equivalent to the following test: Construet
4 confidence interval for the population mean. If uo les in the con-
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fidence interval, accept Ho; if po does not lie in the eonfidence interval,
reject Hy.

We may also observe that the theorem at the end of the preceding
section gives the corvect distribution of } for Lirge sumples.  Since

—2log X = n log (1 + ;;‘E"q) (1)
and since the series expansion of log (1 + &) is y
& \
log (L42) —v— 242 800 qor -1 hX1 (19
g A 2 "3 4 b o\
we have ~\ by
n R i g PN
—21og A = 2 _ S, _EQ -
o8N =l T m 2 e 1

for any fixed value of ¢, howover large, pro.\Qd,ed n is taken large enough
to make #2/(n — 1) less than one. Thd/frst term of this series 18

/K A F-t/2( =AY
\'\ s Fig, 62,

essentially #2, and the others approach zero as n becomes large. Hence
for large n, >@/log X is approximately 2 Furthermorc { is approxl-
mately noi‘sﬁ_’ally distributed for large samples {(Sec. 11.7) with zero
mmean whd Unit variance if the true mean is po; hence £* has approxr
mately’the chi-square distribution with one degree of freedom. This
igdd hocord with the theorem, since Qs a plane and has & = 2 dimer-
#gions, while w is a line and has v = 1 dimension. . .
One-tailed Tesis on the Mean. The test we have just constructed 18
called the two-tailed test of the mean, referring to the fact that the
critical region is eomposed of both extremes of the ¢ distribution. The
~test is not a uniformly most powerful test, and in fact there__is no
uniformly most powerful test for the given null hypothesis. If we
consider a single one of the alternatives t0 ms, g = u1, for exarple,
where g1 > po, the two £ distributions are represented in Fig. 62. hThe
best eritical region for ¢, given a .05 probability of a Type 1 error, 18
obviously the interval ¢ > ¢4, which euts off 5 per cent of the are#
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MEANS OF TWO NOHMAL POPULATIONS §12.7

under f{f; po} on the right-hand tail. This will be the best eritical
region for any value of p greater than .  The power P () of this test
is plotted in ¥ig. 63 together with the power Py(z) of the two-tailed
test. The one-tailed test is certainly better than the two-tailed test
for alternatives g > po, and it is a unifermly most powerful test for .
those alternutives. DBut for alternatives g < po, the one-tailed test .
is mo good at all; the power (probability of rejecting po when u is the
true mean) approaches zero as u moves away from uo towards the left,
There are many practical situations in which the onc-tailed test
should be employed. We may refer again to the light-bulb example:
used earlier in which the standard manufacturing process prodyced
bulbs with a raean life of about 1400 hours. Any proposed new process

e \

LY

P A

10

i

w< Fro. B3, _ _
&)
18 of interest only if it produces bulbs with a greater mean li.fe. One
would test the null hiypothesis p = 1400, and use the one—tax‘led test.
Certainly no harm Sould be done by accepting p = 1400 if in fact 4
were less than #4890, because the proposed process would mmply‘ be
abandoned ‘L{;t&}ﬁher case. In other problems, _Lhe_l_eft«_ha_nd one-tailed

best might Bathe appropriate test. For example, a new process might
be thought to reduce the mean production cost per unit; one would
tesmtl}q\nuﬂ hypothesis that the mean cost 8 for the new process was
*40alto the mean cost 6, for the standard process against the alterna- .
Uves § < 0, If one wore comparing two proposed processes and
Wanted to choose the better for further yesearch and development,
then the two-tailed test would be appropriate. .
¥ 147, The Difference between Means of Two Normal Populations.
‘I\n many situations it is necessary to compare two means when neither
S kmown; in the preceding section we assumed one was known. I, for
xample, one wished to compare tWwo proposed new processes for manu-
263
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facturing light bulbs, he would have Lo base the comparison on esti-
mates of both process means. In comparing the yield of 2 new line
of hyhrid corn with that of a standard line;, one would also have to use
estimates of both mean vields becanse it is impossible to state the mean
yield of the standard line for the given weather conditions under which
the new line will be grown. It is necessary to compare the two lines
by planting them in the same seagson and on the same =oil type, and
thereby ohtain estimates of the mean vields for both lines under sim-
ilar conditions. Of course the comparizson iz thus specializeds s, com-
plete comparison of the two lincs would require {esis over.a périod of
yeard on a vasiety of goil tvpes. R\,

The general problem is this: We have two nornml.\.fmpl1la.t-i0ns-—
one with variate #; which has mean p, and variane®%?, and one with
variate x2 which hag mean p. and variance ¢f. @ﬂ the busis of two
samples, one from each population, we wish toi:”e;:\'t- tha null hypothesis:

Iy = #5\\
The parameter space @ here is four-dimensional ; a joint distribution of
21 and ; is specified when values £P¢ assigned to the four quantibies
(i1, ie, o7, 03).  The subspace w isglirce-dimensional hecause values for
only three quantities (us, 6?,,.?‘33' need be gpecified in order to specify
completely the joint distribbion under the hypothesis that w1 = &2
We shall suppose thajthere are m observations (£, Z1z, - © 5 Tin)

in the sample from thewfirst population and = observations (£, o
©, %z} from t-]%\'%iz(:ond. The likelthood is

ki) it
s 1 w— gy R T fom —may?
ey )5%_5?("“ Yy, D
\"\ =\ ¢ Tnc e
and ifsvmaximum in £ is readily seen to be
\)J(Q) . m e L gt g=tert - (2)
) 3

" R
2 E (i!,'h' — 51)2 o E (ng - f2)2
i 1

If we put g1 and pe equal to 4, say, and try to maximize L with respect

to &, o}, and ¢}, it will be found that the estimate of g is given as the roob

of & cubie equation and will be a very complex function of the observa-

tions. 'The resulting likelihood ratio X will therefore be a complicated

function, and to find its distribution would be a tedious task indeed-

No one has, in fact, worked out this distribution, and there is not much
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incentive to do so because the distribution would very likely involve
the ratio of the two variances. If it did involve this ratio, then it
would be impossible to determine a erilical region 0 << A < 4 for given
probability of & Type 1 error, because the ratio of the population
varianceg 13 ovdinarily unkonown. A number of special devices can
be employed to eircumvent this difficulty, but we shall not pursue the
problem further because statisticians are not yet agreed on what is the
hest procedure. Of course, for large samples this criterion may be
used.  The voot of the cubic can be computed in any given instance by
numerieal racthods, and A can then be caleulated. The gquantity ™
—2 log » wili have approximately the chi-square distribution w 11:h pone.
degree of freedom. .
When it can be assumed that the two populatlons have the game
varianee, the problem becomes relatively simple. Thel ‘DParameter
space & is ther three-dimensional with coordinates (,ukm, %), while
@, for the null hypothesis u1 = ps, has two coordifates, o* and the

common mean g In U we find O
Bi=%  fz= X '\"
&2:”_'1 {i(xr —ﬁlg”ﬂ"z(’rm“%)]
W+ i
8]0 thaf Q':{: ,v
) (p-Fa) 72
L) = [ — P ] ol (3)
2”'[5('111 - il’»)} + Z{wy — Ty %
Tn fw \
| VT N gy} = mELE
A= + (Z‘L +Z.(x’) m -+ n
'1\ T
) 1
e {A(ahw)wi(m ~ )]

~ m —1— n l Z (@ = &)° 4 Z (2o — B F + B 132)2]
which gives

e
???r + n (et 9‘[(1“_-'—“)!2'}

2’{? (2 — F)2 Z (e — F2)* +-=—— (T _x?) }
{4)
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and finally
. {mtri/2
\ = ! | 5
" (3 — &)
m+n Tt

2w — T + Z{ze; — Ta)?

14

This last expression is very similar to the corresponding one obtained
in the preceding section, and it turns out that this test can also be
performed in terms of a quantity which has the ¢ distribution. We
know that %, and Z; are independently normally distribaigd with
means py and pe and with variances s/m and ¢%/n. Rdférring to
Prob. 25 of Chap. 10, it is readily seen that w = &, —{(% is normally
distributed with mean g — p» and variance o3i/m) + (1/n)].
Under the null hypothesis the mean of % will be zér:o. *"The quantities
Z{zw — %0 and E(wy — Z2)%/e? are indepen}iéntly distributed by
chi-square laws with m — 1 and #» — | déstets of freedom, respec-
tively; hence their sum, say v, has the,ehifsquare distribution with
m -+ n — 2 degrees of freedom. Sincefunder the null hypothesis

o Vi@/m) + (/)

is normally distributed withs Zev'o mean and unit variance, the quantity

S ot= A
\/W n—2)
_a N Ve TR Gy — 2) (6)
C\.'\/[E(Zu — E)? + B(oy — T/ (m +n — 2)
has the ¢ dtﬁribution with m + n — 2 degrees of freedom. The likeli-
hood n%ibis
O

1 (mtn)/2

A by o

AN L[ On + n — 2)]
\m and its distribution is determined by the # distribution. The test
would, of course, be done in terms of ¢ rather than A. Possible 5 per
cent eritical regions for ¢ are again £ < —f.1q, £ > f10, O1 {2 > s, and
the choice between these would depend on the problem at hand. If
for example, the first population referred to the yield of a variety of
corn in eommon use, while the second referred to the yield of a pro-
_posed substitute, the eritical region would be ¢ < —f1. If one were
comparing two proposed substitutes, the two-tailed test given by

£ > % would be used.
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We may observe here that it is possible to defermine a confidence
interval for the difference u1 — a of the population means by using the
t distribution. When the two means are different, the quantity

Ty — B — (g — po)

PRV VD)

ie normally distributed with zero mean and unit variance so that

t = Y
v/(m+n—2) O\

has the ¢ distribution with m + n — 2 degrees of freedom. | Si;w,e H
docs not involve 2 but only the parameter 8 = g1 = ke a‘corifidence -
taterval for & can be obtained. Upper and lower limitg, for a 95 per
cent confidence interval, for example, would be oktaiped by solving
the equationy N\

= ttos \x
for 0. ' AV
~.12.8, Tests on the Variance of a No;mg.l"Distﬁbution. To test the
null hypothesis that the variance of alniormal population has a speci-
fied value o} on the basis of & sampE' of size n, we first maximize

< n/2
I = i:}_‘-— g-'}&E[(z“—-p)N]’ (1)
\\2170’2
in 9, which has coordihates (4, ¢%), and in , which is the line o* = o5
The ratio of these shitima is readily found to be
.’\ No.

:"\,:' /2
NS . - (%) R @

A\
“.

where 08"
"\ ¥

N u= 32 ®

T To
Since % iy known to have the chi-square distribution with n — 1
'.iegreeg of freedom, the distribution of could be found by transform-
ng the chi-square distribution by (2). The fest may, however, be
done using v us a criterion. On plotting equation (@) (Fig. 64), 118
Seen that g cvitical region for N of the form 0 <r< A gorresponds
ED the pair of intervals 0 < « < aand b < w <  for, where a and

are such that the ordinates of (2) are equal.
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It can be shown that the power of this test will be slightly improved
if in the criterion {2), n is replaced by n — 1, i.e,, if

% [r--11/2
}\f —— =1 p—¥alw ~nt1) (4)

is used as the test eriterion. We shall not prove this sfatement; it is
an unimportant refinement unless » is small. Using », the eritical
region for u would be determined by numbers o’ and ¥, say, sugh that
the ordinales of (4) were equal at those points. Since the slii-square
distribution i not tabulated in suflicient detail to Gepérimine these
numbers, it i3 common practice to use x5z < % < x%fs g5 the accept-

X
o
N

7
<

A
1.0

T
’i"’,\ T1c. 4.
.\\b.t'

ance region rather than o’ < u < b, if, for example, the probability
of a Type § &rror is specified to be .05. Here again there are some
SILuatmnb'\;n which one of the onc-tailed tests, % < x%; or v > X
woul é*pwferred over the two-tailed test.

¥ i, ufy of Two Varionces. (viven samples from cach of two normal
populatlons with means and variances (1, o) and (us, o2), we may tost

a\>

\ ) Iy o] = 0’%
The likelihood ratio iz found to be

el /2
_..—?n ; __ _...7}1
[%E(xh‘ — f/'l)z:l [2?1‘2(.’13-25 — 52)2]

where the notation is the same as that of the preceding section. This
268
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eriterion may be put in the form

m—1 _Y*
- (TH, + n_)(m-l—?i)/ﬁ, (_n—___']_lr')

A P gy ;‘ m— 1 tmtn) /2 (6}
+ ¥ F
where F is the variance ratio:
o (= D ~ 292 (7)
(m — 1)2{zs — Za)* \

whon H; is true.  On plotting ) as a function of P, it is appar.es[t tHat
the critical region 0 < A < A corresponds 10 a two-tailed fest on 7,
Itis eustomsry to make the two tails have equal areas (tHough this is
nok quile $he best test) because the tabulations of F uke this region
casy to delcrmine. Again one-tailed tests are ofsén’appropriate in |
problems of this kind. RN :

L Equality of Several Variances. A problem hat freqguently arises in
a_Pplied sbutistics is that of testing whetBér)soveral normal popula-
t}ons have the same variance. Let i, ":rﬁ-_g,'- + -, &in; be a sample of
S1z& n; from a normal population with\hean g and variance of, and
let there be one such sample from~edch of % populations (i = I, 2,
‘.c ", k) It is easily found that'tho likelihood ratio criterion for
esting L

which has the F distribution with m — 1 and # — 1 degrees of freefiom

22\
iS I_{D:c(‘zk'\—%.&%:ggz [ 20.;%
¥
:‘.\ H (S,-/ng)““’a
0 SO
\ . (Z8;/ Zng )Tt
where a\JF
" i
\ ) .S:'. = E (SII@‘ - .’TJ")S

V i=1
Ef_;[ua,tign (8) is the direct generalization of (5). The distribution of
i 8 complicated function, and from the applied point of view it is
°f no uso beeause it would not be feasible to tabulate the function
3MyWay, It contains k parameters ng, ns, + -+ + , 7 and would have
to be tahylated for all possible combinations of values of these param-
etel'sl for every value of k. When the n; ave large, the criterion does
Provide a test because —2 Iog A will then have approximately the
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chi-square distribution with & — 1 degrees of freedom under H,
The number of degrees of freedom i1s &t — | because @ has 2k dimen-
gions [the joint distribution of the zy is specified when {p1, g, + « -,
e, 6%, o3, + -+, oi) are specified], while » has £ 4 1 dimensions
corresponding to the & means and the common variance.

It turns out that the test may be made cven when the 5, are not
large. The distribution of —2 log A has been investigated and found
to be well approximated by the chi-square distribution with & —1
degrees of freedom in any case, The approximation is evegsbetter

and the test somewhat improved if, instead of — 2 Ing A, the eriterion
)

—2 lOg )\; '\ (9)

1 o1 1\
H's(k—i“j( a_z—n,)? '
. " ,
is employed, where )\’ represents the expression (8) with all the =
- replaced by n; — 1. The quantity —2 logk'gives a slightly biased
test, and 4 has been defined so as to ofghd the test unbiased. The
critical region for the fest is, of c-ours.é',}hc right-hand tail of the chi-
sguare distribution; a two-tailed t.eétl is never appropriate here.
12.9. The Goodness-of-fit Tgst.” If a population has the rulti-
nomial density N :

W =

o3
W\

k 3
flrs p) = H.’pf‘\' & =0,1; 22, = 1; Zp: = 1 (1)
i=C

as would be the cds€ it sampling with replacement from a population
of individuals which could be classified into £ classes, a common prob-
lem is that of t6&fTng whether the probabilities have specificd numerical
values. Thus the result of casting a dic may be clagsificd into one of
six clagses,& On the basis of a sample of observations, we may wish t0
test @ther the die is irue, i.e., whether

ad

p=1 i=1,2---,6

\\ ) Let us suppose that n observations are drawn from a population
with distribution (1) and that the number of observations t.hat fall
in the 7th class is n,(Zn; = n). The likelihood of the sample 18

L= [lpy @

1

and we shall test the null hypothesis

Hy: i = Puos
270



THE GOODNESE-OT-FIT TEST §12.9

where the puw are given numbers. The parameter space @ has & — 1
dimensions (given £ — 1 of the p;, the remaining one is determined by
Ip; = 1), while w ig a point. It is readily found that 7, is maximized
in 2 when

"
= — 3
2 y @)
hence
Lk
(@) = =[] me @,
ay
L\
In @ the maximum value of L is its only value ~ >
k \ ”
L{@) = T3 oG
1 7
The Itkelthood ratio is _ O
k i 1y \
N=n ] (—‘-‘l) K7\ (6)
e "\ g
1 % 3

and the critical region is 0 < A < A, whete'A is chosen to give the
desired probability of a Type [ error, FOr small n, the distribution
of A may be tabulated directly in_ovder to determine A; for large
values of n, we may use the fact “th‘a’é'— 2 log A has approximately the
chi-square distribution with &1 degrees of freedom. The chi-
Square approximation is supprisingly good even if n is smali provided
that & > 2, \\

Another tegt commcnﬂf.z‘used for testing Hy was proposed (by Kazl
Pearson) before the mérieral theory of testing hypotheses was devel
oped.  This test gfiterion is -

' \Y E
'\'\' - o = z (n; — npy)? (7)

Yi¥H

™
NS

Which ’}B\fl';i‘ge samples has approximately the chi-square distribution
Wi.th “* | degrees of freedom when H » is true. The argument for
USing (7} as a eriterion is briefly this: The approximate large-sample
distribution of the B =n/n (=1,2 -+ -, k—1) is normal and

s 1In facf
P 54 1N pi-pd(hi2D)
F6y 4 . n \E2 1 EPIP ™ +Dk) )
o1, LN J‘pa’c—‘l} = Q; 2 T €
H Di
i

271



8§12.9 TESTE OF HYPOTIIERES

as follows from cquation (10.9.18) on replacing £ by & — 1. We have
seen in Chap. 10 that the quadratic form of a multivariate normal dis-
tribution in % — 1 variates has the chi-square distribution with & — 1
degrees of freedom; hence

E—1k—1

0= 3 S (‘; )(ﬁl P31 — ) @
1

1

has that distribution approximately for large samples, On gimming

(9) with respect to j and remembering that N .
O\
E-1 o\
N
pe=1— 3 p
1 T
we find NS *
| n(p, - w N
v = (10
2 R
or ,
\
_y (i)’ (1)
ng \ ,npﬂ

which is the same as (7) if thel tme vulues of the p; are py.  But let us
suppose the true p; are ph, At least some of which are different from
Pae; then ¥

O, Y (= ) -

¥ o=

\\"' Le NP

has appromm&tdy the chi-square distribution with cxpected valuc
H— L, The ﬁuantltv

~0 =y (et (1)
O\ ™ o
iaj\.eiisﬂy shown to have an expected value
.»\: . ;
\ / E(u) = 2"1 [epu(l — pu) + ¥ (pu — Poi)7] as

which is certainly larger than & — 1 for sufficiently large #, and in fact
is larger than & — 1 for any n, because if E{x) is minimized with I‘eqp“act
to the pg;, it is found that the minimum oceurs when pe; = P and i
therefore & — 1. The argument for using u as a test criterion i3 now
evident. If the true p; are po;, % will have the chi-square distribution
approximately, while if the true p, are not pe, # will be digtributed
with a larger mean value, and that mean value becomes infinite as %
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ecomes large. Hence 1t 18 reasonsble to test Hy by using v as &
eriterion and the right-hand tail of the distribution as the critical
Tegion.

We have discussed Pearson’s chi-square criterion beeause of its
historical intercst and because it is still commonly used to test Ho.
Tt i, in fact, equivalent to the likelihood-ratio test in large samples.
Perhaps the easiest way to show this is to write M in the form

- 1l o
7\=sz!“%€

where
K = E_ IE&.' .\:\
I n! N\ °

N\

If the variates of (8) are changed from p; to 7 the fungtiéﬁl. will be
unchanged except for the change in factor n®—Y/? singé @dp: = dn..
Tt follows from See. 10.9 that MY/ K approachey((8). By using
Stirling’s formula (Sec. 2.3) for the factorials in K it can be shown
that K/n# just cancels the coefficient of the’}a}iﬁanential in (8) to
within terms of order 1/4/7; hence —2 log Xis symptotically equiva-
lent to 2. « W
12.10. Tests of Independence in 'Qc;ﬁtingency Tables. A contin-
geney table i multiple classificatione™ v Thus in & public-opinion SUrvey
the individuals interviewed may be classified according to their abti-
tude on a political proposal abd wecording to sex, 10 obtain a table of
the form: e
™

[ Favor ‘ Oppose Tndecided

N ‘_____ N I

Mt‘:n,\::‘\',". ........... 1154 475 243
Wofngn ... .....o.- 1083 #2362
AN | | |

This i?%: 2 % 3 contingency table. The jndividuals are clagsified by
two”t"fi‘té‘"iﬂ, one having two cat-egories and the other threc aate-
gorles’ The six distinet classifieations are called cells. A three-way
contingency table would have been obtained had the individuals been
?urther classified according to a third criterion, say according 10 annual
ncome group, If there were five income groups set up (such as: under
$1000, $1000 to $3000, - - - ), the contingeucy table would be called
22 X 3 % 5 table and would have 30 cells into which a person mi.ght

e put. It is often quite convenient t0 think of the cells as ¢ubes in a
Block 3o units wide, three units long, and five units deep- If the
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individuals were still further classified into eight geographieal locations,
one would have a four-way 2 XX 3 X 5 X 8 contingency table with
240 cells in a four-dimensional block with edges 2, 3, 5, and 8 units
long. The contingency table provides a technique for investigating
suspected relationships. Thus one may suspect that men and women
will react differently to a certain political proposal, in which casc he
would construct such a table as the one above and test ihe null hypo-
thesis that their attitudes were independent of their sex. Toeonsider
another example, a geneticist may suspect that suscepliBbility to a
certain disease is heritable, He would classify a samle st jndividuals
according to (1} whether or not they ever had the mse\mb, {2) whether
or not their fathers had the disease, (3) whether g not their mothers
had the discase. In the resulting 2 X 2 X 2, Qu.nur geney table he
would test the null hypothesis that c-lassiﬁcai,'ro}t\(_l} was independent
of (2) and (3). Again & medical researchiworker might suspect &
certain environmental condition favoredyavgiven discose and classify
individuals according to (1) whether of\16t they ever hiad thoe disease,
(2) whether or not they were subjettto the condition. An industrial
engineer would use & contingendy.table to discover whether or nob
two kinds of defects in a m&ml}“actured produ(,f were due to the same
underying cause or to d]ﬁ”erent causes. It is apparent that the tech-
nique can be a very useful Yool in any field of research.

Two-way Contingency Tables. We shall suppose that n individusls
or items are classi H’according to two criteria A and B, that there
are r classifications A;, 4,, « - -, 4, in 4 and s classifications By,
By, - - -, BB, and that the number of individuals belonging to
A; and B; i§'w5. We have then an 7 X s contingency table with cell
trequengié€n; and Zn; = n.  Asafurther notation we shall denote the

N

“|B1|Bs|B:|---| B
NS .y
) Ay | R | Reg] - - - B
A | oy | Bag [ Mo |+ 0 0 | M
Ay | mas| Rz | Baz| » + + | s (1)
Ar | Bt | Rez | Bya | -+ [ e
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row totals by 7, and the column totals by n,,

Ry, = E Toig ng = Eﬂii
i 3

Of course

We shall now st up a probability model for the problem with which
we wish to deal. The n individuals will be regarded as a sample of
size # from & muitinomial population with probabilities p; (5 = 1, 2

3135 =1,2, - - - ,s). The probability distribution for a single

abservation s (Sec, 10.9) )
4 '\

J(oay, 20, - - - s ) = Hp?; zy =0, 1; Ex&_ '=_‘_.,}‘1 ©
i ii A\ 3

We wish to test the nuil hypothesis that the 4 and"é\élassiﬁcatious
are independent, i.e., that the probability an individtial falls in By is
not affected by the A class to which the individualhappens o belong.
Using the symbolism of Chap. 2, we would w%ite
P(BjA) = P(B)  P4BY =~ P(4)
ar “’:1‘
P(4;, B) =LM4IP(B)
If we denote the marginal pro!g&‘t;i'ﬁties PlAjbyp (i =1,2, ++ . ,i:')
and the marginal probabilities P(B;) by ¢, the null hypothesis is
simply \\"

Hy: fliy=pigs Zpe=1, Zg; = 1 3)

When the nylt - ri):cy\‘uﬁesis is not true, there is said to be inferaction
etweon the twe Griteria of classification.

.The comng\e"pammeter space @ for the distribution (1) has 78 — '1
dlmensions}{having specified all but one of the py, the remaining one 18
ﬁxed.jE}”_E'pef = 1), while under H, we have a parameter space » with

)

"= M s — 1 dimensions. The likelihood for a sample of size # is

L= |lpy ®

&

and ity maximum in £ oceurs when
. iy 5
& 05 = j )
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In w,

L= Tl tar = () (T4 U

and its maximum occurs at

o=t g =T U

The likelihood ratio is therefore

() (IT) >
N =
Lﬂﬂnnj ..'\:\ ©

The distribution of X under the null hypothesis is not umquo because
the hypothcsis is composite and the exact dlstrlbutmn &f A does involve
the unknown parameters p; and ¢;. For larg&%ﬂmplt s we do have a
test, however, because —2 log X is, in thal\edse, approximately dis-
tributed by the chi-square law with N\

1= (s — WO — s — 1)

degrees of freedom, and on thevhasis of this distribution a unique
critical region for X may be datérmined.

In casting about for s tcsﬁ.x{*hich may be used when the gample 8
not large, we may inquizehow it is that a test criterion comes to have
a unique d1btr1but10n. £0r large samples when the distribution ac stually
depends on unknofgh parameters which may have any values in cerfain
ranges. The andwer is that the parameters are not really unknown;
they can be eS\tlmated and their cstimates approach their true values
as the sar}ane size increases. In the limit as » becomes infinite the
parametersare known exactly, and it isat that point that the distribution
of & an}u&lly becomes unique. Tt is unique because a particular point
in as'selected as the true parameter point, so that the n; are given &

Mumque distribution, and the distribution of \ is fhen dotermined by
_this distribution.

It would appear reasonable to employ & similar procedure to set UP
a test for small samples, i.e., to define a distribution for A by using the
estimates for the unknown parameters In the present prohlem, since
the estimates of the p; and g; are given by (7), we might just substitute
those values in the distribution function of the n; and usc that distri-
bution to obtain a distribution for ). However we should still be 1o
trouble; the critical region would depend on the marginal totals 7.
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and n.j; henee the probability of a Type L error would vary from sample
to sample for any fixed critical region 0 < A < 4.

There is a way out of this diffieulty which is well worth investigation
beeause of itz own interest and because the problem is important in
applicd statistics. Let us denote the joint density of all the ny; briefly
by f{r:), the marginal density of all the »., and n; by g{n., n;), and the
conditional density of the ny;, given the marginal totals, by

Jlnig)
g(nid ﬂ-f)
Under the null hypothesis, this conditional distribution happens tg bé
independent of the unknown parameters (as we shall show presedily);
the cstimators n; /7 and n;/n form a sufficlent set of statisti@slfar the
piand g;.  This fact will enable us to construct a test. ™
The joint density of the ns; is simply the multinomial\:"

Fnylne, ng) =

n! N\%
Flran, nag, + 0, mp) = = [ Bl (9
[IEA S
174 \
ifl ey 3 :'
n 2 and in « (we are interested in the disfribution of X under Ho) this
hecomes

.‘;:‘“
FICTIIE TN R .\ I Q"”) (10}
(711 12, s ) ,‘m;T (I;I P )(];[ i
- vif
T‘O obtain the desired conditibnal distribution, we must first find Fhe
distribution of the 7y, an%’fm;;, and this iz accomplished by summing
(19) over all sets of nggnuch that

'\:‘:\”E"??-ff = #; E Ry = M, (11)
N < H

. Yor fixed n*m\l"g\inal totals, only the factor 1/Ing!in (10) is involved
I the sum, 80*we have in effect to sum that factor over all 7; subject
to (11)..2The desired sum is given by comparing the coefficients of

TN N H
! 93\113 the expression

1

L IR R L N ol
= (e 4+ -0 Fa)r (12

On the right the coefficient of Iz is simply
_nt (13)
g Ilnt
i
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On the left there are terms in Hx? with coefficients of the form

ral mal o omal T (14

H nit! H 7in | H Ty, ! “ il

i i i i
where ny; is the exponent of #; in the jth multinomial. Tn this expres-
sion the ny; satisfy the condifions (11}; the fivst, condition is satisfed
in view of the multinomial theorem (See. 2.4), while the second i3
satigfied becanse we require the power of x; in those terms TeNbe n.

The sum of 2ll such coefficients (14) must equal (13); h(,;}ge\we may
write N\

n? ~,". Ny
) (15)
Z Hﬂ-w n ' H g l o ‘\'.

i N\
This ig precisely the sum we require, bec&\qse there 13 obviously one
and only one coefficicnt of the form of (14){on the leit of (12) for every

possible contingency table (1) with gi‘{fen marginal totals, The dis-
tribution of the n;, and n; is, therefom

9l ) = (Ui %‘?Hn N (H P )(H @F"") (18)

which shows incidentallyMhat the ;. are distributed independently
of the n;; this is un ){éeébed beeause 7., and n.,, for example, have the
variate 71 In conumno
The (.,OlldlthI\B.I dlstnbutmn of the ny, given the marginal tobals, is
obtained by leldlng (10} by {18) to obtain
{ \.
.;ﬁnn, Tyg, * 00, ARy, Ray, ot ) =

T,
&

(TI-'%1 D{n.s) (17
T alng!

Awhibh happily, dees not involve the unknown parameters and shows
\t‘hat the estimators are sufficient.

To see how a test may be constructed, let ns consider the general
situation in which a eriterion A for some test has a distribution w(; )
which involves an unknown parameter 8. If ¢ has a sufficient psti-
mator §, then the joint density of A and & may be written

v(\, 8 6) = v2(\[6)2:=(8; 0) (18)

and the conditional density of X given 8 will not, involve . Using the
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conditional distribution, we may find & number 4 (§) for every # such
that )
fu A9 0 0Bdn = 05

for cxample, In the )\, § plane the curve A\ = A(f) together with the
line » = 0 will determine a region I&. The probability that a sample

é
L\
& NS
A=A(5) M
R D
O
0 PPN A
will give rize to a pair of values (3, §) which’¢orrespond to a point in
B is exactly .05 because’ o\
s o PADLES "
PI(», 6) in R] = f_ i j; 2Gt, 6; )dx dd (19)

_ f_:{'ﬂm yl()\[é)dh] va(B; 0)dd

\ﬁ}“’”'_%w(g; 8)dé
0a

0%

N\ S/

Hence we may kés\’t ‘the hypothesis by using # in conjunction with A.
rI‘he eritical regidn/is a plane region instead of an interval 0 <A < A;
1t is such a repion that whatever the unknown value of ¢ may be, the
Type I BI.‘I’QI‘:has a specified probability. The fest in any. given situ-
ation 'é”timﬂ_ly amounts to a conditional test; we observe & and test X
by &n{mterval 0 < < A() using the conditional distribution of »
given §, T is to be ohserved that this device cannot be employed
unless 6 has a sufficient, estimator.

The above techniquoe is obviously applicable when 6 is a set of
Parameters rather than s single parameter and has a set of sufficient
estimators 4, In particular the technique may be employed to test
the eriterion (8) for the null Lgpothesis of a two-way contingeney table.
One merely uses the conditional distribution (17) and determines an
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interval 0 < A < A(n;; n;) which has the desired probability of 4
Type I error for the observed marginal totals.

In applications of this test one is confronted with a very tedious
computation in determining the distribution of X unless », s, and the
marginal totals are quite small. It can bhe shown, however, that the
large-sample approximation may be used without approciable error
except when both r and s equal two. In the lafter instanece, other
simplifying approximations have been developed (sce, for example,
Fisher and Yates, ‘“Tables for Siatisticians and DBiometrieians,”
Oliver & Boyd, Ltd., Edinburgh, 1938), but we shall not explore the
problem that far, N\

H the distribution (17) is replaced by its mul't;.j'{(z:ﬁ”.iate normal
approximation, it can be shown that the eriterion g

" = E{—”‘—”-—L@—‘f'M“s\\ (20)
Ry g 1
X'\\:

has approximately the chi-squarc digfribution with (r — 1){s — 1)
degrees of frecdom and is a reasonablaseriterion for testing o of (3).
This is the criterion first proposed v Karl Pearson) for testing the
hypothesis, and it differs from{+2 log X by terms of order 1/ V.
The two criteria are therefor8 essentially equivalent unless # is small
The argument that u is a rédsonable criterion is entirely analogous to
that used to justify (7) {n the preceding section.

Threeway Contingency Tables. If the elements of a population cad
be clagsified accerdmy to three criteria A4, B, C with classifications
As {1 = 1, 2, ' R s1), B (4= 1, 2, Tty 32), and Cy (b = 1, 2

*, 83), aganiple of » individuals may be classified in a three-way
81 X 82 X.\S;)c"ontingency table. We shall let py; represent the proba-
bilities asdociated with the individual cells, 7% be the numbers of
sample elements in the individual cells, and, as before, marginal totals
will‘be indicated by replacing the summed indes by a dot; thus

g \
\ W

\ 7 L1 a1 a2
iy =~ E g f.p = 2 Z isn (21)
=1 i=15=1

There are four hypotheses that may be tested in connection with
johis table. We may test whether all three criteria are mutually
independent, in which case the pull hypothesis is

Diir = pﬁgf?’ﬁ @
or we may test whether any one of the three criteria is independent
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of the other iwo. Thus to test whether the B classification was
independent of A and €, we would set up the null hypothesis

Disk = Purtl (23)

The procedure for testing these hypotheses is entirely analogous to
that for the two-way tables.  The likelihood of the sample is

L=Tpsr  Yopm=1 %mm =n (24)
ik ik i
In @ the maximum of L occurs when
i
Pix = _n;_k ' ,(250
50 Lhat O
L iy N
L) = por [T nz O\ (26)
ik W\

To test (23), for example, we would make the substitutiém (23) in (24)
and maximize L with respect to the pag; to find/

. &
P = g = @

2@ = (1) ”)(H ) (28)

The likelihood ratio X is given’\'ijy the quotient of (28) and (26), and in
large samples —2 log hk&-he chi-square distribution with

and

§18255 — 1 — [gsl:a{3~_ 1) + 8 — 1] = (s185 — D{sa — 1)

degrees of freed()m{:;kga,in the large-sample distribution is quite ade-
quate for all prwefical purposes unless the test has only one degree of
freedom, K ™ '

12.11. Hd’%es and References. It is now apparent that the sampling
distril;gyt-ib}is based on norma! theory have an all-important role in
St.fa‘th‘{iﬁa“l inference, both in estimation and in tests of hypothescs.
We shall cite here the classic references.

The chi-square distribution is due to Karl Pearson [1], who was the
first major contributor to the theory of statistics. Pearson published
Dearly one hundred pupers from about 1895 to 1935 which laid a firm
foundation for modern statistics. He formulated the basic problems
and went far along the waygto solving many of them. He is rightly
Tegarded as the founder of the science of statistical inference,
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We have alrcady mentioned that W. 8. Gosset first showed the way
to make an exact inforence. Before his paper [2] was published, the
accepted method of making inferences was to substituice estimates for
parameters in population distributions. Gosset was the second major
contributor to the field of statistics; he published shout twenty papers
in this field between 1908 and 1031.

The ¥ distribution was derived by R. A, Tishar [4], who also gave
the first mathematical derivation of the ¢ digtribulion i4]; Gosset had
obtained it by heuristic methods. Fisher is the real giant in"dovelop-
ment, of the theory of statistics. His first paper was piiblished in
1912, and his work continues unabated today. Althoughshuhdreds of
scholars have contributed to the gcience of statllsties, j;l]:is\f)ne man must
be credited with at least half the cssential and imponla nb developments
as the theory now stands. \‘

The general theory of testing hypotheses agwve have presented it,
is due to J. Neyman and E. S, P(:arson@he son of Karl Pearson),
who published the theory in an importa;nf.- @eries of joint papers begin-
ning in 1928 {5]. Many earlier warkers, particularly Fisher, had
carried this problem far, but one cruefal ingredient of the theory (the
power of a test) was missing uqtjl’l\? cyman and Pearson supplied it.

1. Karl Pearson: “On a crifedion that a given system of deviations
from the probable in‘the case of a correlated system of variables
is such that it ’qm;\ reasonably be supposed to have arigen in
random sampling,” Philosophical Magazine, Vol. 50 (1900}, p.
157. N

2. “Student”, (W 8. Gosset): “The probable error of a mean,”
Biometzikd, Vol. 6 (1508), p. 1.

3. R. A.\;Figher: “The frequency distribution of the values of the cor-
rglation coeflicient in samples from an indefinitely large popula-

Mion,” Biometrika, Vol. 16 (1915), p. 507.
A(B. A. Fisher: “Applications of ‘Student’s’ distribation,” Metron,
N/ Vol 5 No.3 (1923), p. 90.

5. J. Neyman and E. 8. Pearson: “On the usc and interpretation of eer
tain test criteris for purposes of statistical infercnce,” Biometrikt,
Vol. 20A (1928), pp. 175 and 263,

12.12. Problems

1. Given the sample (—0.2, —0.9, —0.6, 0.1) [rom a normal‘popu'
Iation with unit variance, test whether ¢he population mean is 2610
at the .05 level of significance (i.e,, with probability .06 of a Type 1
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error), Tost whether the mean is zero at the .05 level relative to
olernatives u > 0.

9. Given ihe sample (—4.4, 4.0, 2.0, —4.8) from & normal popula-
tion with variance four and the sample (6.0, 1.0, 3.2, —0.4) from a
normal population with variance five, test at the .01 level whether the
means arc equal relative to alternatives for which the mean of the
first population is smaller than the mean of the second.

4. A metallurgist made four determinations of the melting point
of manganese: 1269, 1271, 1263, 1265 degrees centigrade. Are these
in accord with the published value of 1260 at the .05 level? (Assume{
normality.) A

4, How wonld one make a two-sided test of p = po for & no\f'msjl
population with known variance? Is this a uniformly most powerful
test ?
5. Plot the power function for two-sided tests of the null hypoth-
esig p =0 for a normal distribution with knowh.\yariance using
sample sizes 1, 4, 16, 64. (Use the standard deviatieh ¢ as the unit of
megsurement on the u axig, and .05 probabilit; o Type I error.)

8. What is the best critical region R inMhe sample space (x1, 2,

., %) for testing the null hypothesis, fhat the mean is po sgainst
the alternative that the mean is p1 fo;ﬂ*s: Tormal population?

7. Referring to Prob. 6, what wotdd be the region for testing
between two values of the va.ria“née; ‘% and 03?7

8. In tosting between two ¥alues, uo and u1, for the mean of anormal
population, show that the jrobabilities for hoth types of errcr can be
made arbitrarily small b‘y\iaking o sufficiently large sample.

9, A cigarette manufacturer scnb each of two laboratories pre-
sumably identical g@niples of tobaceo. Each made five determinations
of the nicoting datent in milligrams as follows: (@) 24, 27, 26,21, 24
and (3) 27, %23, 31, 26. Were the two laboratories measuring the
same thing?\ (Assume normality and a common vyariance.}

10;‘ The metallurgist of Prob. 3, after assessing the magnitude of
thedrarious errors that might acerue in his experimental technigue,
decidéd that his measurements should have a standard deviation of
about 2 degrecs.  Are the data consistent with this supposition at the
05 level? (Usc a one-sided tesh, & > 2.}

11. Test the hypothesis that the two samples of Prob. 9 came from
populations with the same variance at the .05 level.

12, The power function for & tost that the means of two normal
populations are equal depends on the values of the two means, &1 a.nd
kr, and is therefore a surface, But the numerical value of the function
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depends only on the difference § = puy — gs, 50 that it can be adequately
represented by a curve, say P(6). Plot P(#) when samples of four
are drawn from one population with variance two, and samples of two
are drawn from another population with variunce three for tests af
the .01 level.

13. Given the samples (1.8, 2.9, 1.4, 1.1}, (5.0, 8.6, 9.2), (3.3, —4.1,
0.8) from normal populations, test whether the variances are equal at
the .05 level.

14, Given & sample of size 100 with 7 = 2.7 and 3(x; — I)? = 225,
test the null hypothesis:

N

(\A
Ho:p=3 and o2=25 O
at the .01 level assuming the population is normal?)
16. Using the sample of Prob. 14, tesi the lif@%nt.}msis that p = ¢
at the .01 level. \
16. Using the sample of Prob. 14, test :a‘(}the .01 level whether the
95 per cent point « of the population ,&i}tﬁbution i8 three relative to
alternatives @ < 3. The 95 per cent p&int is the number « such that

f_‘!m flx) dz= .95, where f(z) is t}ﬁeﬁimpulation density; it is, of course,

# + 1.645¢ in the present insgfdnce where the distribution is assumed
t0 be normal. N

17, Verify equations (8%) and (8.6).

18. Verify equation(8.8).

19. Given the aa}rple of Prob. 14 together with a sample from a
second normal popllation of size 80 with Z = 2.2 and Z(z; — 2)* =
320, test whether the means are equal ut the .05 level.  (The required
root of th’e\c:ﬁ‘gic equation encountered here is 2.56.) )

20. Inmaking two-sided tests of @ = 8y, one does not ordinarily
merely\réject 8 when the test criterion falls in the critical regior}; h‘e
lls:uqllj? states that ¢ < 6 or that 8 > 6, depending on which is indi-
‘cated by the result of the test. In this situation there is a third error
}Iossible: one may declare # < 8, when in fact > #,, or vice versé.
Plot the probability of such a gross error as a function of (s — #)/
in the situation described in Prob. 4 for samples of size four and for
probability .05 of & Type I error. .

21. A sample of size n is drawn from each of & normal populations
with the same variance. Derive the likelihood-ratio criterion for tEfSt-
ing the hypothesis that the means arve all zero. Show that criteriod
is a function of a ratio which has the I distribution.
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92, Derive the likelihood-ratio criterion for testing whether the
correlation of a bivariate normal distribution iz zero.

08, If &y, &z © * -, T AIE observations from normal populations
with known variances o}, a3, © ¢Z, how would one test whether
their means were all equal? :

24. A ncewspaper in a certain eity observed that driving conditions
were much improved in the city because the number of fatal automobile
accidents in the past year was 9, whereas the average number per year
over the pust several years was 15, Is it possible that conditions were
about the same as before? Assume number of accidents in & given
year has a Poisson distribution. O\

95. Six i-foot specimens of insulated wire were tested at high yoltage
for weak spols in the insulation. The numbers of such W@aﬁ' spots
were found to be 2,0, 1, 1,3, 2. The manufacturer’s qualidy standard
states that Lhere are less than 120 such defects per 100 £§e[‘-. Does the
hatch from which these specimens were taken confoxh #0 the standard
at the .05 level of significance? (Use the Poissp hdistribution. )

96, A psychiatrist newly employed by & mee&vﬁ clini¢ remarked at
s staff meeting that about 40 per cent of all chronic headache sufferers
were of the psyehosomatic variety. Hig digbelieving colleagues mixed
some pills of plain flour and water, giving them to all such patients
on the clinie’s rolls with the storffl‘tﬁat they were & new headache
remedy and asking for comments.® When the comments were all in,
they could he lairly accurately classified as follows: {1) beiter than
aspirin, 8; (2} about the z{é.\e’ as aspirin, 3; (3) slower than aspirin, 1;
(4) not worth the powde:\ﬁo blow them to hell, 20, While the doctors
were somewhat surptided by these results, they nevertheless accused
the psychiatrist of gxaggeration. Did they have good grounds?

27. Supply #hé'details of the argument in the last paragraph of
See. 0, .\ 4
28. A fiiB: was cast 300 times with the foliowing results:

N\
\ ) Ocourrence. ............. 1 2 3 4 5 6
Frequeney..............- 43 44 56 45 66 41

:-he the data consistent at the .05 level with the hypothesis that the die
B {rue?

29, Of 64 offspring of a certain Cross between guines pigS,IS"l were
red, 10 were black, 20 were white. According to the genetic model
th_ese numbers should be in the ratio 9:3:4. Are the data consistent
With the modol at the .05 level?
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30. A prominent baschall player's batting average dropped from 313
in one vear to .280 in the following year. e was at bat 374 times
during the first year and 268 times during the sceond.  Is the hypoth-
esis tenable at the .05 level that his hitling ability was the same during
the two years?

31. Find the mean and variance of ny; in the conditional distribution
(10.17).

32. Show that the cxpeeted value of 4 defined by {10.20) is n{r —
(s — 1)/{(n — 1) under the conditional distribution (10.17). O\

33. Using the data of Prob. 30, assume that one has o samplevof 374
from one binomial population and 268 from another. ’]gi}ri}re the &
criterion for testing whether the probability of & hit i3 tiiesame for the
two populations. How does this test compare with{he ordinary test
for a 2 X 2 contingency table? \\

34. The progeny of a certain mating were ¥lassified by a physical
attribute into three groups, the numbers beingd 10, 53, 46, According
to a genetic model the frequencies should/be in the ratios p*:2p(l —
2):(1 — p)2  Are the data consistent wi}h the model at the .05 Jevel?

36. A thousand individuals Weljeiicléi.ssiﬁed according to sex and
according to whether or not they ¥ere color-hlind ax {ollows:

ay

. ) Mule | Femule

Noweh) ... 443 514
Cg&%ﬁnd ............ 38 B

According fo,the genetic model these numbers should have relative
frequene%%\given by
O

(5]

N,
&

+ pg

..\".

/N
\
\ ) 3

ol polg
(ST T

where¢ = 1 — p is the proportion of defective genes in the population-
Are the data consistent with the model? '
86. Treating the table of Prob. 35 as 2 2 X 2 contingency table, test
the hypothesis that eolor blindness is independent of sex.
37. Gilby classified 1725 schoo! children according to intelligence and
apparent family economic level. A condensed classification follows:
286



- PROBLEMS ;- §12.12

L il
Duli | Intelligent | Very capable

Very well clothed. ....oooe 81 322 233

Well clathed. ... vovnooo.o] M1 457 153
Poorly clothed......ooovs 127 163 43

Test for independence at the .01 level.

38 A sernm supposcd to have some effeet in preventing colds was
tested on 500 individuals, and their records for 1 year were compared{\
with the records of 500 untreated individuals as follows: A

{
'\

o colds | One cold | More than ong gofq ]

Trosted. ooersoaenen- 252 145 108,
Untreated. .. .o.......| 224 136 140
>
Test at the .05 level whether the sets of ﬁl%babilities for the two
trinomial populations may be regarded as ‘the same.

39. Derive the general M criterion 4 testing for independence in
an r X s table when one set of ;mﬁ@inal totals (the row totals, for
example) are fxed jn advance ag inaP’rob. 38. Esach row is regarded &s
a saraple from an s-fold mulwt'{nomial population with probabilities ps

such that 2 p; = 1for alku\i 'he hypothesis of independence hecomes:
i

Py = py = pai = * slo= puiorallf. How many degrees of freedom
does —2 log X hayel/

40. According/4d” the genetic model the proportion of individuals
having the §1{1\ir€’5100d types should be related by:

™

..\".’.’ O:¢*
@ 2 A p? + 2pg
N B:r? 4 2gr

AB: 2pr

Where p + ¢ - r = 1. Given the sample: 0, 374; A, 436; B, 132; AB,
58; how would you test the correctness of the model?

41. Given cell frequencics niz (6 = L2, * *~ crii =120 8
k=1,2, .. ¢ inathreeway classification, derive the criterion for
testing whether all three eriteria of classification are independent.

How many degrees of freedom does —2 log X have?
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42. Galton investigated 78 families classifying children according to
whether or not they were light-eyed, whether or not they had « light-
eyed parent, whether or not they had a light-eyed grandparent, The
following 2 X 2 X 2 table resulted:

Grandparenl

Tight XNot. A~
Pareni " \‘ N
- h - 9 -
Light | Not Light K Xot
| _ N
= | Light........... 1928 | 552 .{2% {508
S iNot ... 303 | 395 N2 ‘ 501
|

Test for complete independence at the =.Q~1\_“]eve1. Test whether the
child classification is independent of t-h’c})thel‘ Uwo classifications at the
01 level. O
43. Derive the \ eriterion for testing whether the ¢ classification is
independent of the jk classifidadion in o three-way conlingenecy table
when the marginal totals n;_’_;'ar'e fixed in advance. The probabilities
satisfy the rclations E p\g;;" = 1 for all <, and the null hypothesis is
TN
Ds = pQ{k\% Y= Pk or simply Dise = D
How many dogf‘c:aeé of freedom docs —2 log X have? )
44. Deriyé the test for complete independence in the situafion
described»i}i%rob. 45, The null hypothesis is py, = pjge. How many
degreesiéf"freedom does —2 log A have? How does this lest eompare
with:t:hat for the case in which the 7, are not fixed in advance?
m45' Compute the exact distribution of : for a 2 X 2 contingency
able with marginal totals n, = 4;n; = 7;m, = 6;mg =25 What
15 the exact probability that —2log  exceeds 3.84, the .05 level
of chi square for onc degrew of freedom?
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CHAPTER 13
REGRESSION AND LINEAR HYPOTHESES

13.1. Families of Populations. In this chapter we shall study
special cases of a situation which may be deseribed as follows: A
family of populations has a set of variates (which may be symbolized
by ¢ whether or not there is only one variate), a set of paramcters.g
which are in gencral unknown, and a scb of parameters 2, Whiéh are
nsually observable and known for a given sample. The paraméeters 8
may ot may not be functions of the parametersz. 1f the aZrc functions
of z, the functions will in general be unknown. We sl:m%‘ consider the
problem of maling inferences about the parameters\d on the basis of
samplos drawn from pepulations with differefih, values of z. The
family of density functions may be represented\by

j; 6,8 8

We shall scloet populations with knq‘t{'ﬁ values of z and draw samples
from each of these populations. ‘Thl'ls we shall deal with collections
of samples: 24 (7 = 1, 2, - - -.,"nl)’forz =zanan(f=12 " , Tig)
fore =29y » « + 5 2w (J =',‘j‘.',,\2} e my) for 2 = g We may, of
course, draw only one obé@\x?ation from each population, in which case
the observations coulf\be represented by (z1, 21, (s, 22), * * "
{Zm, 2x).  On the ba;{.'is"of such collections of observations on & and z,
We may estimatesgertain of the parameters & or test hypotheses about
the paramoteré 9.

This geng‘si"e?} i)rol)lem may be illustrated by congidering the distribu-
fion of héiwhts of individuals. A person’s height may be expected to
he pelgtol to his father's height 2 and bis mother’s height 2. Let us
assihige that for parents with given heights, childrens’ adult heights will
be normally distributed with mcans ulz, 2) and variances a? inde-
vendent of the #'s, i.e., that heights z have densities

1 e_(ngrﬂ}[x—-p(ﬁrz')]s (1)
'\/Q:r a

fxsp 0% 2,2) =

Hore we have a variate z, a pair of parameters 2, 2’ which can be
observed, and a pair of unknown parameters u and o, one of which is
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§13.1 BEGRESSION AND LINEAR ITY POTHESES

regarded as a Tunction of the observable patameiers. Ry measuring
the heights of children and parents in several famities with more than
one child, we may, for example, test the hypothesis that the funetion
form of u(z, 2") is

g =a+ bz 4 e’ (2

where the @, b, ¢ are unknown constants. If this h vpothesis is accept-
able, we may further wish to estimate the unknown paramcters a, b, e

To consider another example, the velocity of an object falling™rom
rest I air may be expected to depend on the length of time Mt has
been falling, on its weight w, and on certain other parametetss specify-
ing its size and shape. Again the distribution of velocitids might be
assumed to be normal with mean g and variance o?, hoth of which may
be functions of the observable parameters ¢, 0, 50770 the basis of a
sample of observed velocitics together with the"’&}1‘1‘{35})011(1111;; values
of the observable parameters, onc might, for'example, test certain
hypotheses about the forms of the unkngk\j\% functions p(f, w, s) and
a¥(t, w, s). o\

These problems are regression prodlems. They are somctimes
referred to as prediction problemsey, Thus in the first example, after
the parameters a, b, ¢, and ¢? are eslimated, one may predict with about
95 per cent certainty that thewshildren of a couple with given heights
%o, 2, would have heights between

o~
a -+ bzo + ez -—\12966 and a + bay 4 c2h + 1.96¢

if the estimates were baged on a large sample. The accuracy of a pre-
diction depends {&rgely on the size of the prediction intervul which in
the present ingt.atnce depends on the error variance ¢% In the case of
a falling bod¥, the error variance is so small under certain conditions
that ti‘l&élocity can be predicted almost exactly (the length of 2
95 pergent prediction interval is small enough to be negligible for most
practical purposes). In the casc of predicting heights of children, the
‘prediction interval would not be small relative to the mean & + b
+ ez).

Regression problems oceur in great variety in all sciences, hoth
natural and social. In fact, from one point of view the whole aim of
science in general is to predict {on the basis of past experimental work)
what will happen in a given circumstance, ;

We shall be concerned with a special case of the general regression
problem which, however, has very wide application. We shall deal
with normal distributions in which the mean is a function of the
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SIMPLE LINEAR NORMAY, REGRESSION §13.2

observable parameters. The variance of the normal distribution will
be assumed to be independent of the observable parameters. The
mean p{z), where 2 is the set of observable parameters, is called the
regression function; the function would represent a curve if # consisted
of one parameter, a surface if 2 consisted of two parameters, a hyper-
qurface for more than two parameters.

13.2. Simple Linear Normal Regression. A variate z 13 normally
distributed about a regrossion function which is linear in & single
observable parameter; the variance is independent, of that parameter.
The density is 4

L eb—(attol &
Vare' Ko
We shall deal with the one-parameter family of normal di,éfﬁ‘butions
for which a, 3, #? are fixed. The family is represented in‘Fig. 65; for
any given valie of 2,  is normally distributed with/mean « -+ fz
and variance o, AN

6 ‘o

fe; o 8, 0% 2) =

"\: \ Fia, 65.

W& shall consider first the estimation of a, 5, o?. Let {(m, ),
t=1,2 .. p, bea sample of 3’s together with the corresponding
values of z. Some of the z; may be equal, as would be the case if
more than one x value were drawn from any specific distribution. Tt
i convenient to label the #s differently even when soie of them are
the same. Tt is necessary that there be at least two different values
of ¢ however. Obviougly one cannob expect to estimate « and 8
from g sample drawn from a single member of the family of distribu-
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§13.2 REGRESSION AND LINEAR HYPOTHESES

tions. The method of maximum likelihood will be employed to esti-
mate the parameters. The likelihood is

1
= e U1t e (et Ae0)® ]
I 5.0 2
and its logarithm is
[ E’J: j— ?_L r 2 _1_ v 4. , ;\
log L 5 log 2r 5 log o 5t 2, [ — (o + ﬁf«)J @)
i A\

On putting the derivatives of thig expression with 're;.a}bec{: to a, B,
o? equal to zero, we obtain the relalions "\

2%
 { ‘:

ol = Z(z; — @ — Szl-)'f..,:\""’ (4)
2z — o — ) =BN\Y {3}
Eﬁ,‘(ﬂ'}g - a — ﬁz!)%:o {6)

which must be solved for the unknadwh parameters. The last two
equations arc called the normal equations which determine the cocffi-
cients in & linear regression funotion. They are linear in « and 3 and
thercfore readily solved. We{éﬁ‘a]] let

I =
)

Y e=i3n
s J

The solutions of (5')‘)\}6.), and (7) may then be written

=2 =

“..,j o/ & _ E_(:F': — f)(zi — E) g
:‘\Z“:\ ﬁ = _E(Zt —_ 2)2 ( )
\\ &=z~ 5z 9)
O vy 1 A 10)
Ay o= EE (@i — @ — B2;)* {
O

U
\“}hich are the required point estimators of the unknown parameters.
We notice that the solution could not be earried through if all the %
were equal because the denominator of (8) would vanigh.
Distribution of the Estimators, Since & and # arc linear functions of
the z; (which are normally distributed), it follows that & and § mus?
themselves have a bivariate normal distribution. One could specif.y
that distribution by simply finding the means, variances, and covarl-
ance of the g and 5. We shall, howcever, find the distribution another
way. The main objective is to show that & and § are distributed
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SIMPLE LINEAR NORMAL REGRESSION: §13.2

independently of 6%, and in doing this their distribution will fall out
ineidentally. ‘
We shall evaluate the joint-moment generating function:

a—a, f—8 ndl
. o s et .
m(ss, 82, 83) = E(G ’ ’ ? ) (1)
- 1 Y5 n‘*—_--“—‘+s=ﬁ"5+vs“i:—%z(n—a—ﬂs«)x
E_ZT_OTQ 2 a T * o lI d:l','“ (121..\

for the three vuriates (@ — aj/o, (8 — 8) /e, and né*/ot, T})aiﬁfst
step in evaluating the integral is to transform the variates ; o

s"ﬂ

". >
. m\\.

\

g =2 (@~ a— B8 (13)

this removes the factor 1/¢* from the integrand 3{15} Shanges the expo-

nent in the integrand of (12) to \\
n . L\ ‘.:}
E il — }/3 2(5 Uﬁiyiyi (14)
i=1 LS

where N \\

o = slI{Ez‘z"ﬁn) — 22']””_-[‘_:8:2(5‘ — 2 = ;81 + bis2 (15)
E(z&—- z)2
and P\

o = 8y(1 — 2s9) ‘iii’s';[nasaf + na(ad; + ab) + by (16)

where the a; and b, .ar:e:fieﬁned by (15) and &; is one or zero aceording
as ¢ 13 or is not (;qu\af to j. We have then to evaluate an integral of
the form { :\ Y

O
ppoa = w2
N \'\\ e f (_1_) P Seqg- W T Ie v H di (17)

R\ —w 2w
'..\ﬁ,
wifich,“apart from a factor 4/[o%, is just the integral in equation _(9-6-_2)
with'the ¢s put equal to zero. The value of that integral 1s given 1o

(9.6.4), and it follows that .
m{ss, 83, 83) = ¢TI /v (18)

Si The algebraic reduction of (18) may be accomplished as follows:
ince

&
+
:Q\.)L
(]
B



§13.2 REGRESSION AND LINEAR HYPOTHESES
equation {16) may be written

o = 61‘:‘(1 - 283) -+ 2s; [ bib,’Z (Z{ — 2)2 + %] (]_Q)

or

o = 8;(1 — 2s;) + 2s; (d;d; + %) (200

where

d“ = T L 21

v 2z — F)? N2

so that Zd; = 0 and 2d% = 1. It is not difficult to xenfy then thas
o] = (1 — 2s5)"2 (22)

0

and that the elements of the inverse of the matrj{ﬂ&‘fﬂ are

By . 233
T T2 1 25 (M + n) )

These last two relations enable one to: put (18) in the form

8[1/2 u(é"—.‘z) ](31’“/’“) Ezi—2Fmat o)

'm(Sl, 83, 33) (1 _ 233}(?&—2%’2

(24)

The form of the moment g(:nera,tmg funciion (24) cnables one to
draw several lmportant \Qonclumons Remembering that s is asso-
ciated with (8@ — a)/¢\sh with (5 — B)/r:r, 83 with nd?/c? we observe

1. That the paixofwariates & and 3 are distributed inde pendc\rvcl}r of
&*® because m(sy, 82085) factors into a function of s; alone and a funetion
of s; and s, agmb (see Sec. 10.4). We shall let

\\ Mm(81, 8, 83) = ma(s1, s2)ma(ss) (25)
N\

2. @hat the functional form of ma(s1, 82) is that of the moment

ggn"ératmg function for a bivariate normal distribution (Sec. 9.6);
Shehce ¢ and § are jointly normally distributed with means o and 8,
respectively, and variances and covariances

2 o2 26)
& nZ{z — 2)2 ¢
A 27)
A Tr— T (
. 2-
cov (& ) = — E'(%z)? (28)

294



STMPLR LINEAR NORMAL REGRESSION §13.2

The jnverse of the matrix of these variances and eovariances is

&n/az né/cgl
ni/et  Zzljed

(29)

which are the coefficients of the quadratic form in the distribution of
(8 — o) and ® — 8.

3. That @ and § will be independently distributed if the z; are chosen
go that 2 = 0,

4. That the quadratic form of the joint distribution of & and B,

0 - Lna— o+ 202ta — ) — &) + 546 - 9] ©O)
oA\
has the chi-square distribution with two degrees of freedom. O '
5. That mals:) is the moment generating funetion for a chisguare
distribution with » — 2 degrees of freedom, bence that nd?*/ahhas that
distribution {Sec. 10.3). O
Confidence Regions and Tests of Hypothesis. In regression problems
the main intereat is usually in the regression goﬁeﬁ’cients e and 8.
Of eourse there is no trouble in estimating 2 grn testing hypotheses
about ¢2, because the chi-square distribution{cb5 above provides con
fidence intervals and tests directly. o3 .
To obtain & confidence interval for gypwe necd only to ohserve that
the marginal distribution of & is mjlfmﬁl with mean « and variance
given by (26); henece " '

&\Qg) nZ{z — &)2
%= SN - S
N T R
hag a normal distributij'(;ﬁ"with zero mean and unit variance. Bince #
and ng?/a® are indePendently distributed, it follows from Sec. 10.6 that
-

.:§; L) —
NPT A e/ - 2
:’\ ¢ —
& nin — 2)3(@ — 2)°

W™ .\ nn — 2) 2tz = 27
N @ = a) Te2E(m — & — Ba)?

has the ¢ distribution with n — 2 degrees of freedom. Kince « 18 the
only unknown quantity in this expression, the inequalities m

™

]

(1)

Pt <t<t)=1—¢

E:‘ta.y be converted to obtain a confidence interval with ﬁdu(?ial _proba-
ility 1 — ¢ for @, The quantity ? also provides a test criterion for
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§13.2 REGRESSION AND LINEAR HYPOTHESES

testing hypotheses about « in just the same way it docs for the mean
of a normal distribution (Sec. 12.8), Thus to test whother the regreg.
sion line z = a + Bz passes through the origin in the #, 2 plane, we
should simply put @ = 0 in (31) and-observe whether i < ¢, if the
level of significance is to be e. Onc-tailed tests may also be made.

Confidence intervals for 8 and tests on 8 may he made in a quite
similar way. It is readily seen that

=236 = o
e — @ — 335)2

t=@-p N (32)
also has the ¢ distribution with n — 2 degrees of fr(_erﬂi()ﬂ({?ﬁ& involves
only the unknown parameter 8. To test, for exampley whether the
means of the family of normal distributions 11n(:le;‘fc’é’i&sideration Were
independent of the observable parameter, oqg‘\w'ould put 3 =0in
(32) and observe whether |i| < {, where ejs'the chosen significance
level, O

For simultancous estimation of « anc{@,\v’ve may use the fact that

wnd?/e?

F = :‘Q'x (33)

where @ is defined by (30), hzis the 7 distribution with 2 and n — 2
degrees of freedom (sectiof¥0.5), and involves only the unknown
parameters o and 8. 'Thainequality in

\

\'\‘~~’ PF<F)=1—c¢

is readily seen id.definc an elliptical confidence region in the «, 8 plane
for o and 8. NF6 test whether o and 8 had certain specified values ao
and By, on€would put & = ayand § = 3, in (33) and ohscrve whether
or not @"e\'rcsult-ing value of F exceeded F..
Allﬁ}ese tests on a and 8 could have been obtained by the likelihood-
ratia moethod.
“\Mt is worth observing that the accuracy of the estimation of & and §
\depends on the choice of the 2. Thus the variance of & will be a8
small as possible when the # are chosen so that z = 0, I'or, since

Iz — 2) = Za? — pz?

the least possible value for 3® (cquation 26) is ¢%/n and oceurs when

Z = 0. Evidently the confidence interval for « will be shortest on the

average for given n when z = 0. The variance of 3 (equation 27)

can evidently be made small by choosing widely gseparated values for
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the z. In fact, if 2 is the smallest practieable value of ¢ and 20 is
the largest, then g will be best estimatod when all the sampling is
done at those tivo values of z. It often happens in practice, however,
that there is some doubt about the linearity of the regression funetion
o - Bz, and it is desired to test for linearity. In this case it is neces-
sary to have observations for more than two values of 2. A test for
tinearity will be described in Sec. 14.2.

13.3. Prediction. Let us suppose thai a linear regression function
2 = a4+ Bz hag been estimated by ¢ = & + 33 on the basis of a
sample of # chservations. We now wigh to predict the value of z for
some specified value of 2, say 2e. Thus if 7 is son’s adult height and &
is fa‘E-\her’s heisht, a sample of observations will provide estimates, &/
and § for a linear regression function. A prospective father of height
% may wish to predict his son’s height. The predicted heighty s, of
course, To = 4 + @zu. Or to consider a different problgm&. et x be
the demand for some commodity, and let z be the whblgsule price of
the item two months earlier, or the wholesale price Qf‘some ingredient
or part of the item two months earlier. Tt is dégired to predict the
demand two months in advance of the presify” From past records
one may eollect a set of pairs of ohservations’{z;, z:), where 2; js the
demand at & given time and 2; is the whelasale price two months pre-
vious to that time, and cstimate coejﬁéi’ents a and 8 of & linear regres-
sion. If 2, ig the present wholesale-ptice, then the predicted demand
two months henee is zo = @ + B,

The worth of a prediction depends on the magnitude of its possible
error, and we shall take aceont of that error by oblaining a prediction
interval which i analogoﬁs to a confidence interval. The variate x is
s random variable Aith a normal distribution having mean « + Bz
and variance o fFEe predict-ed value #g = & + Bzg has two sources
of error: in t.hé\'ﬁﬁ,t place & + Bz, is merely an estimate of the mean
fﬁf %, and thcfa}ttual value of & may, of course, deviate from its mean;
in the sedond place the estimated mean is subject to the random
sarupfing'errors inherent in @ and 3. Iia, B, andoswere exactly known,
then 265 per cent prediction interval for = would simply be

ot Bz — 1.96¢  to  at B + 1.96¢

since the probability that = will £a1l within 1.96¢ of its mean is .05 for
& normal distribution. Since all these parameters excopb 2o are
unknown, we must attempt to set up an interval in terms of their
estimates, .
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§13.3 REGRESSION AND LINEAR HYPOTHESES
The variate
=z — & — 3z0 1)

is necessarily normally distributed since it is a linear function of the
normal variates z, &, §. The distribution of w is therefore known
when its mean and variance are given. Since

E@)=a+pz E&=a F@ =32

we have .
O\
E(u) =
2N
The variance of w% is therefore N\ -
ot = E(u?) QO
= E{x — & — §2,)? \ )
= 0% + 08 + 2ip® + 20, E[(& &) (& — 3] 2

remembering that z ig independent of & ei,-&l’ 3. o is simply ¢? the
variance of the normal distribution, aml\fhe other terms in (2] are
given by (2.26), (2.27), (2.28), so that

ot = [1 " (1;;;) T2 4 22 — 230.,]

Sz — £)°

. o~ 2

",z L +n+2(z.;-é)2:|

\\ n+1 (2p — 2)2
O 2 [ w T Z(z; — 2)° } @

A\
A 95 per ce;n{p‘rediotion interval for  is just —1.96s, to 1.960., but
this sti hvolves one unknown parameter ¢ which appears in ow
We can’ iminate ¢ by using the ¢ disiribution. The variate #/vs 1_5
noregelly distributed with zero mean and unit variance and is distri-
bz?fﬁd' independently of né?/¢?; hence
3

Ul oy ( 4)

b= Vnét/(n — 2)a?

has the ¢ distribution with n — 2 degrees of freedom and involves 0o
unknown parameters. The inequalities in

P(-—f,<t<t¢)=l—é

may be converted to dotermine a 100(1 — ¢) per cent prediction inter-
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DISCRIMINATION §13.4

val for . The interval is given by

where
p L n 41 (2o — Z)?
A = ta \/:_ 2[ 7 + z—(:za — 2)2] (6)

Several properties of the prediction interval should be obscrved:

1. The lengih of the interval is greater than 2iw on the average
regardless of how large a sample was used to cstimate « and 3. Thig
is entirely reasonable because we are predicting a single observatighyw
which is normally distributed with standard deviation e. N\

2. The average length of the prediction interval incrgas,eé’ as zo
moves away from 2. If it is possible, the values z; chosen fox obtaining
observations to estimate the parameters should be selected so as to
have a mean value near zo. N\

3. The relation (5) holds only for a single prediétion based on the
estimates &, 8, ¢. One cannot use the estimated regression to make
several predictions and expect (5) to remain drue. The relation has
meaning only if «, 8, ¢ are reestimated eath time a prediction on & is
made. The probubility statement talesaccount of sampling variation
in the estimates as well as in z, angi’i:f" the original estimates are used
repeatedly (not allowed to vary), the statement cannot be effective,

It is eany to generalize thg@bovc technique to fake account of pre-
diction of the mean of » shpiple of size m observed for z = z,. Let
2, T, v c -, a, be a szaxﬂple of m observations at zo with mean .
The mean of RS

MK
18 zero, and :%i“\xariance #2 is the same as (3) except that {n -+ 1)/n s

Z’:f}"—{?z—ﬁ%

replaced by((dym) + (1/x). The variate

N \ \ o oo

Y, N O
has the ¢ distribution with # — 2 degrees of freedom and involves Do
u_”knOWn parameters; hence it may be employed to construct a predic-
thD. :.l]]_‘t.ur\_ra‘i for a—},«-

13.4. Discrimination. The diserimination problem is an estimation
broblem and is in a sense the reverse of the prediction problem. in
Prediction one wishes to predict = knowing 2o on the basis of estimates
o e, 8 . In discrimination onc wishes to estimate zo having observed
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x. The general class of biological assay problems ave of this character,
Thus, for example, the concentration of a certain vitamin may he
measured by observing the gain in weight of a week-old chick when i
diet is augmented by daily doses of the vitamin for several days. A
manifacturer of the vitamin might determine the strength of a new
batch as follows: Let x be the gain in weight and let 2z be the con-
centration. Using material of known concentration, he would feed
several chicks with different concentrations 2, (4 = 1,2, - - « , n) and
obgerve their gaing in weight 2;. At the same fime other ehicks grould
receive their vitamins from the batch with unknown concentration 2,
and their gains in weight, say x; (7 =1, 2, - - -, m){ 'would be
observed. On the basis of these data it is desired to {estimate the
parameter 2o, N

The general problem of classification is a discpipination problem.
Anthropologists, for example, make mcasuremen.t"s;} on skulls of known
age z, then estimate the age 2o of a skull of unknadwn age with measure-
ments 2'. Taxonomists use the ﬁechnic.luj(x\t‘o diseriminate between
varieties of plants with quite similar agpéui:ance.

Using the notation of the first paragraph and the model of Sec. 2, the

likelihood of the observations @, e\ * * « , z, and 2], @, + + 2 6
1 \min _ONY
I = il S0/ 208 2imima—Pa)i—{ 11207 Bz/'—a—Ba)? (1)
Vel o

and on differentiatin f.tﬁe\logzmrithm of this expression with respect to
o%, a, B, & In turn, ofe*can readily determine the maximum-likelihood
cstimates of thege\phrameters; they are

MY
‘é’é“ E_(x‘z_(- ‘j) (zi\i"' 2) (2)
Y : 2 — 2 z
§& =z — Bz 3)
RN ) L X o
2\ J g% = min [Z (2 ~ @ — Bz)? + z {(af — :I:JJ (1)
Q i '
2q = = _OE (3)
g
where
‘—1\1 -__1 ,—;_-. :
T nL B_EEz* J_sz"

Equations (2) and (3) are the same as (2.8) and (2.9); equation ©®)
gives the desired point estimate of z,.
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4 confidence interval for 2o is also easily set up. The quantity
v =3 — & — Br | (6)

is normally distributed since it is a linear funetion of normal variates;
its mean is zero, and its variance I8

a _ o ]. 1 (Zn - 2)2
““'”[E+ﬁ+z(z,-—z)9] @
just as wag found in Sec. 3. The two sums in (4) both have chi-square

d'stributions when they are divided by % the first with n — 2 add the

weond with m — 1 degrees of freedom, The two chi squdres are

independent since they are functions of independent samdples; hence

their sum has the chi-square distribution with = +- n &-(3 degrees of

freedom.  Turthermore the two chi squares are obwiansly independent

of #. It follows then that Y,

VAL

@ .."!O'L‘ ~.\ W

P = e ey ®)
m + n)at; m T — 3)o*

has the ¢ distribution and will providg';‘a confidence interval for 2, since
that is the only unknown parameter which appears in (8).

We have considercd a verysfnch simplified discrimination problem,
but it is one which oceurs iequently in practice. The more general
problem has to do with %hﬁ’base in which each observation consists of
several components., @3., T, * T ;) which have a multivariate
normal diSt-I'ibllt-iOl‘b“}ith maeans o + 1812, [+43 + ﬁgz, L ¢ 4] + ﬁkz
Given eStimatgst&“the «'s and #'s on the basis of & zample of ohserva-
tions (s, x:h\\ -, 23, one wishes 10 estimate 2o for an observat_io.n
(@10, To0, N8V, 7o), We shall have to omit this problem because 1t 18
very gumiborsome to handle by elementary methods. .

13:6-"Muitiple Regression. We ghall consider now & variate
Wl}':h is normally distributed with variance a* and with a mean of the
form ez 4 aw + - - ¢ + o the #z's arc observable parameters,
and we are concerned with the other parameters (the a's and o%). We
may wish to estimate the parameters or tesb certain hypotheses about
the paramoters. The density for a sample of size n i8

— ot z"—Eo&pz;ﬁ *
() Fa W
7w T

301




§138.6 REGRESSION AND LINEAR EYPOTHESES

and the logarithm of the likelihood ig
= _ " »_ L L A
L = 3 ]Og a 20_32 (In ; Oyt :u) (2)

We shall let the indices 7 and j run from 1 to %, aund the indices p, g, ,
and s run from 1 to k. On differentialing L with respect to a,, we find
that the &’s are determined by the following sot of k normal equations

(there being an equation for each value of ¢): A\
ale-Yan) =0 O w
: v O

If we define a,, and y, by the relations ’“':’ N

dpg = 2 Epifgi
3

5 A\
Wy = s A
PR
the normal equations may be Wl‘it’-tﬁl:l”:
E;@q’:‘b&p = ¥q €
RN

The matrix of coefficientg{(#, /| may be inverted if its determinant docs
not vanish, and lgttifig are represent the elements of the inverse
matrix, the solutiqn\s}f (4) for the &'s may be writlen

L >

< &, = E ar %, (5)
2

L D

xt\n’
N\ .
as followaby multiplying both sides of (4) by a* and summing on ¢
(see 3€¢."0.2). The maximum-likelihood estimator of o2 is

Q~ 6= E (= — ; 82) (6)

as follows from putting the derivative of L with respect to o2 equal to
zero and substituting the &'s for the «'s.

Distributions and Confidence Regions. In considering the distribu-
tion of the estimators, we observe that the @p, are not funetions of the
random variables z; and that the y, are linear functions of normally
distributed variates and mugst therefore be normally distributed. We
may determine the digtribution of the &, by simply finding their means
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variances and covariances. The mean is
B@,) = E (3 aryy)
=Y a,rqa Y, 2B (@)
L35 e
ke

N\

= Z 6prar :~\.
T £

= dp ' \ \\' (7)
The covariance of &, and &, 18 N
- { "’5\\.
E(@, — ap}(dy — ay) = E(@pds) — apaq \/
=F (Z a?”z,.wi) (E a“za,-:z:x,‘. o Gplg
i af (&
=F 2 (2 a”’z,,:) (Eza*{szg‘; Elza;) — opeeg  (8)
[ g W
When 1 = 4, A\
E(x,::r,;-) = (2 qifzb:) (Z awzﬂ')
wNy 9
where # and » run from 1 t-oJ-»:;}md when ¢ = j,
E(k} = (E auzui)z + ¢*
R n

</ . .
On substituting :t,hiegé values in (8) and making reductions similar to
thoso employe\,d"tb obtain (7), onc finds
’\ N/
N R, — an) (@ — ag] = et ©

NS
any t

L ONY . ] s
Th{’;&wse of the matrix |e?%?| is laps/a?ll; hence the &'s have the

2 g (17209 3 apldp — ) (e —oea)
(1_ el (10)
2 L

density
It can also be shown that nd?/o? has the chi-square di‘str'%bution .With
2 = k degrees of freedom and further that nd* Jo% s d:.astri.buted inde-
pendently of the 4's. We shall omit the argument, which is somewhgt
tomplicated but entirely analogous to that used in Sec. 2 to ebtam
303
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the joint digtribution of &, 3, and ¢% in the case & = 2. From these
facts it follows thal any particular regression coefficient e, may he
cstimated by a confidence interval using the ¢ distribution; ¢, — a, is
normally distributed with zero mean and variance a?7?; hence

Gy —apy (11)
Nk

has the ¢ distribution with n — & degrees of freadom and involves no
unknown parameters except «,. A confidence region for the “whole
set of regression coeflicients, ai, as, -+ -, i, In a F€dimensional
space may be dotermined by the inequalily in O

}
~

PEF<Fig=8 Y

t:

whore Fi_g is the eritical level for the F dist-rilj’th‘-i\c;n with k and n — £
degrees of freedom.  The quadratic form i the exponent of (10) has
the chi-square digtribution with & dcgrq@g\éf’freedom and is distributed
independently of ng?/a?; hence \ - '
p o (= R Zan(® — ad(d; — a) (12
SN hng?

NNyt *
N

has the F distribution with¥ and n» — /& degrees of {reedom.

Tt may be instructiyé %o compare the results obtained thus far in
this scetion with t-h,cz&j’e;\;f Sec. 2 by putting £ = 2, z; = 1, and identi-
fying as, os, 25 With'e, 8, 2, respectively.

Prediction. _(iwen estimates of the parameters o, and o in (1), one
may predich the value of x corresponding to a given set of values,
Zyy, of thjeirji)scrvalnle parameters. The predicted value would of
courS\b@«“
\ To = 2 &PZUP (13)

v

&«
S

AN
e \ . . . . . i .
\ JThe prediction interval s sct up by considering the varate

U =5 — Zdp2op

which is normally distributed as it is a linear funetion of normally
distributed variates. The mean of u is zero since both @ and Zds#e
have expected value Za,20,. The variance of u is

ol = B(u) (1)

= E(x — Saye)? + E[S(d, — apzol® (16}
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cinee z is independent of the &’s.  The firet term on the right of (15) is
#2, and the sceond term is readily evaluated by means of (9). One

finds
gl = ot (1 + E @mzupznq) - (16)
P

Thus the variate

wigy,

il

e ")
v/ né% (n — k)o?

has the £ distribution with » — & degrees of freedom (u being indes {
pendent of ¢?) and may be cmployed to define a prediction interval for
1 since it involves no unknown parameters, 2% ~
13.6. Linear Hypotheses. Rcferring to the multiple regression leb
us eonsider how we might test the hypothesis that the {regression
coefficients o, have certain specified values aop. The pyll Hypothesis is

7

Heo,=onm@=12 ",k and\Q 7> 0 (1)
and the alternatives are \ >

Hoimw <ap< o (p=1,2 @& ad >0

The subspace o has one dimension,v\;x-'iﬁ'le 0 has & + 1 dimensions.

If the likelihood (5.1) is maximize@ul @ and in Q, one finds the A

criterion, afier considerable algebiaic reduetion, to be

A ,imx\ 1 o (3)
T E/ o — BIF

N\

where F iz the guantify in (5.12) with the a, replaced by aop. Hence
the N test iz equivalent to an F test, and large values of F correspond
to small valuegof A; the null hypothesis would be tested by using the
right-hand .‘r;,%éf the F digtribution for the critical region. When the
%, are zgwd, ‘as is often the cuse, the double sum in the numerator of
F may b8 reduced to the simple form, Z&:Ys by substituting for &
froﬁ\(,%_g;)‘

A more commonly desired test is one which tests some but not all
the regression coefficients. Let us suppose that we wish to test

whether the coeflicients ai, ez, * = ° 5 &n (7 < k) have specified
values ag, (w =1,2, -+ -, m) whatever the values of the last L—mw
of the ’s. The null hypothesis is now
Hy: - o
u <a<owp=mtl, k)
au=a’0u(u=1)"‘,‘m) ot >0 (4)

306



.

£13.6 REGRESSION AND LINEAR HYPOTOESES

while Hp i3 as specified in (2). We shall mercly present the test
without the derivation because of the complex algebraic reduction
required. It bceomes plausible if one considers the raarginal distribu-
tion of the &, (u =1, - - -, m); this disiributior is cbtained by
integrating out &.p1, @uaz, * ° -, de from (5.10).  After the integra-
tion there will remain a multivariate normal distribution, and the
coeflicients of the quadratic form will be, say, (.,/e° The 4, are
obtained (Sec. 9.2) by striking out the last £ — m rows and columns
of 2#? and inverting the result; i.e., .

o] = et wmo =12 - - ,m L

7NN ¢

The quadratic form of the marginal distribulion s § i

E buv(éu - au) (&u - G-'u) ’
Q —_ u.r

7
4

\ ©)

*

. . e AN
and it has the chi-square disiribution ibh m degrees of freedom.
Since @ is distributed independently of Cah the quaniity

. N Q,e m 6)
F mr Sn — kot (
has the F distribution with =2 and n — k degrees of freedom. The d
criterion for testing {4) tudhs out to be

oi:} 1
\: . —
\h {1+ [m/(n — E}E}7

with the «f's subs;tﬁuted for the e's in @ hence F/ provides an equiva
lent test. '\~

We a\ ﬁOW in a position to consider what is called the general
linear k@}potheszs of normal regression theory. The problem is to test
the hypothems that the coefficients , satisfy certain linear relations,

sséu
\

{7

enoy + ceay + ¢ 0 -+ Cuar = Cn
ey + Caes + 0 0 0 A Capen = Co2

Cmicy F Cmeas + 0 ¢ 0 A Copan = Com

where m < & and the ¢'s are given numbers. These cquations may be
written
zcupap=cﬂu p:']-,Z,"',k u=1’2’.--’m (8)
P
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We suppose that these m relations are independent, i.e., that it is not
possible to ob tain one of them by adding chosen multiples of the others.

The null hypothesis that (8) is truc may be reduced to the form of
{4) by recasting the problem in terms of new parameters, say 81, s
.+, By, and new observable parameters, say w, W, * ¢, Wi The
first m of the @'s are defined by putling

2 Cuplp = Bu 9)

The independence of the relations (8) ensures that m of the o's can be
solved for in terms of the remaining «'s and the 8.. Supposing the
equations can be solved for the first m of the a’s; the solutiops are
simply G\

7N

oy = E v (ﬁw - Ecwar) ) n b (10)

) r ) '..‘.\\
where % and @ run from 1 to m and r runs from m +- 1 %6 k, and where
the ¢*" are the elements of the inverse of HG««;H.:QT}IG remaining §'s
may he put equal to the remaining o's: -

) ¢ 3
Q"

a, = B r=m + ’1'.,“:...: ok (11)

These new parameters 8, are now subéﬁt{lt-ed for the ap in the mean of
3 N\
. " - ) .

Z (rpzp = E [Z Ci‘f’&(ﬁﬂ - Z&:rﬁr)] 2y + L ﬁ"‘zf (12)

r 1 7,4 3 ¥ ’ r
n 3 \ h H
The new observabic pamﬁcters are then taken to be the coefficients
of the s in (12); 1.¢. /s the coefficient of 85 in (12):

A¥ _
inZ%'b%zu p=1 2, ,m
"'?’\zzp_-zcmjcv'pzu .p=m+1’...,kr
T,

e

(13)

AN
T‘{lﬁ\?‘a}lﬁ of & is now expressed in the form Zfzs. The null hypoth-
e Decomes simply 8, = cow (=1, 2, " " " m), the one already
discussod as (4). )
13.7. Applications of Normal Regression Theory. The estimation
and test procedures we have just developed have a very wide range of
application. The reason for this is the completely arbitrary nature
of what we have called the observable parameters. The Z» may, for
®ample, be artificial code variables. Thus, suppose in a fertl!lzer
®Xperiment to investigate the effect of nitrogen and potash on a given
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crop, the erop is grown on plots with different fertilizer treatments,
4

We may express lhe mean yicld in the {form E gy Leh oz = 1 for
1

all plots; let z» be zero for those plots with no nitrogen and one for all
plots with a given application of nitrogen; let 2; be zero for plots with
ne potash and one for those with potash; sand let 2; bo zero for all plots
except those trcated with both fertilizers. Now wq represents the
yield with no fertilizer, as the added wield due to nitrogen, as the
added yield due to potash, @z + az + w4 the added yield dueso both
fertilizers. Having performed the experiment, we may eglitohte the
o’'s, and we may test various hypotheses.  Thus to test whether potash
has any effeet, we get up the null hypothesis that it gldé% not and test
whether a; and a; are both zero. To test whethepefiéets of nitrogen
and potash are strictly additive (that therc is piphieraction between
nitrogen and potash), we would test whethar a¥ (.

In another instance the 2, may represent{ithetions of some variable.
As an example, we may consider a lime {_{e}iezs. The average monthly
prices of some agricultural produgfy~eggs, for example, if plotted
against time over a period of yearg)¥will show rather erratic looking
fluctuations but will have certain iherent regularities. There will
be g frend of some kind—a smé’éﬂl curve which may be thought of as
representing the general chpiuii:tcr of the variation of price with time
apart from any fluctuagiens. Also there will be an anmual cycle of
sorts; the prices in a given year will usually be higher during the winter
months than the §himer monthe. A firm which stores eggs in Jarge
quantity may Wish o know, for example, whether the amplitude
of the cycle is dfidependent of the average price level from year to year
This quesj[.iQ’n’might be studied as follows: Let @ be the price, and leb
{ representtime in months. The data consist of prices £y, &z, © * * 1 ¥
at timedy? = 1,2, - - -, 2. Over the period of time included, let us
suppose it is apparent that a quadratic function will fiv the trend quite

el enough. Then the {ollowing regression function might reasonably
\_tepresent the trend and cycle il the null hypothesis (that the amplitude
15 constant} is true; -
2t 2xi

ar + add + ad? + sinﬁ + @ cos T3

Ii the null hypothesis is not true, the amplitude might reagonably be

supposed to be proportional to the gencral price level given b}" the

trend, or more generally, to be some linear or quadratic function of the
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time. To tuke account of this possibility, terms like

agl BN 2{;—{ + ot ©08 % + a? gin 2—;’; + a4’ cos g{g’
would be added to the function given above. The 2z, arc now defined
by zo=1, 2o =4 = © ©, #s = t* cos (Znt/12). The null hypothesis
would be testod by testing whether the last four regression coefficients
were Zero.

The observable parameters may be any functions of any number of »
variables. Thus, for example, a variate z may be known to be some
funetion of two varables u and », but the form of the functionsuy
f(, v), may be unknown, and the purpose of the experiment mgag'{:f)e to
investigate the form of the function in the neighborhood of somg point
(ug, 7). It may be reasonable to suppose that the funéfion can be
adequately reprezsented in this neighborhood by a qua,dl'}tic function,
i, by the first six terms of its geries expangion:

o ) Fuliy 1ot — ) + foato, 1) < BLC
+ 147 foulrta, v0) (1 — 1a)? A 2fue{tin, Dol — up){v — o)
A fulue v (o — 207

where the subsecripts indicate pgtﬁ:ﬁmt differentiation. One would
RN
merely estimate the o's in.fz ayiy, Where z =1, 22 = U — Uy
s\ L
= —rg, 2= (U — Og\é,fzﬁ = (u — uo){n — vo), 2= (¥ — f:‘n)g.
If one wished to test th:\,dequacy of the quadratic representation,
eubic terms micht befieluded in the regression function.

13.8. The Met ad ;Jf Least Squares. There is a general problem of
eurve fitting wivdh is entirely anrelated to normal regression theory
but which rgs\ksf“fm solved by formulas identival with those we have
obtained folt tstimating regression coctlicients.

Suppbie some varisble @ is a function f(z) of ano ‘
and\t’&héﬁ' the function: has been investigated by megsuring « for certain
chosen valucs of z. The result might be as sbown in Fig. 66. There
may be no question of random variation. The value 21 measure(iat-
% ight be exactly the same if it were determined a second time. The

funetion i simply not smooth. But for purposcs for which the func-

tion s 1o be used, one may wish to approximate it by a sm.ooth. fune-
proximating line be

Hon, say a straight line. How might guch an ap '

drawn?  One might simply lay & ¢ransparcnt ruler along the points

and drasy u line which fits pretty well, 4nd this method may be as good
' 309
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as any for the purposes at hand. Or one might divide the points into
two groups, the left-hand four and right-hand four, and compute the
averages of the x and z values for the two groups. Tho averages 7
and z for one group will determine one point, and the averages 7 and z
of the other group will determine a scecond point which, together
with the first, determines an approximating line. here are many
possibilities.

X N\

Z; Zy Zy ‘..’Z}v Zy Zg Zy Zg 4
¥ 66,

The problem is generaHy solved by what is ealled the method of least
squares. 'Thig methodlshooses that line, # = « + S8z, which minimizes
the sum of squarcs og’che vertieal deviations of the polnts from the line.
Supposing now that‘theve are 5 points (%, 2)) (¢ = : ?1) and
that we denote the ordinate of the point on the hno t 2 b}’ x;, the
vertical dey{a,mons are ¥; — &; and their sum of squares is, say,

g, £/

\ ’ S=E(:m—a:$)2=E(xe—a“ﬁze)2

” :WB w1sh to fix the line (determine o and ) so that S will be minimized.
N\ This would be done by setting the partial derivatives of § with respect
to @ and 3 equal to zero and solving for @ and 3. The resulting equa-
tions are the same as (2.5) and (2.6).

More g,en{,rally, any cmpirieal funetion z; = flus, v, " " )
=12 * , ) may be approximated by any linear combination
Z apzy of knovrn functions z, of the variates #, ¢, = * -, @ by the

7=t -
method of least squares. One would choose the «'s s0 as to IIlll'lln-:Uze
the sum of squares of the deviations of the z; from z} = E appii 16
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one would minirrize

$ = 3 (o~ S )’

i P

with respect to the o's and find that they were determined by the rela-
tions {5.3).

The primary reason that the method of least squares is commonly
used for curve fitting is merely that it leads to a simple linear system
of equations for determining the coefficients. To determine the coeffi-
cients by minimizing, say, the sum of the ahsolute deviations, or the
curn of the fourth powers of the deviations, would ordinarily be mgichy,
more troublesome, It just bappens that the form of the normahdis
tribution is such that the sum of squares of deviations from t}w}rﬁ'gres—
sion function is to be minimized to determine the coefﬁcie;‘lts' in the
regression function. If, for example, the points in Fig.fﬁﬁ were sup-
posed to be deviations from a regression line with probubility dis-
tribution other than a normal distribution, then it sgduld be appropri-
ate to determine cstimates of o and 8 by mag{h&izing the likelihood
defined by that distribution. Even here, thotgh, the method of least
squares is coramonly used in practice to avold algebraie and arithmetic
difficulties, and this is, of course, good vand sufficient reason. The
theoretical advantages of the principle of maximum likelibood over the
principle of least squares may becotte unimportant when i comes to a
matter of choosing, say, betwegn'a 40-hour and a 10-hour computation.

13.9, Notes and Refe er{be’s. A more complete aceount of the
theory of regression may b}found in Chap. VIII of Wilks’ book [1}. In
particular, the proof ebfhc important result that 42 is distributed inde-
pendently of the @{8)s given there. The notation of Becs. 5 and 6
has been made, qm{e similar to that of Wilks in order to facilitate
reference 1o t]:}ii:-‘ proof and to others which are omitted here.

There i ﬁ greal body of literature on & subject which we have
Ofmitt}?fl: tatirely. A special case of normal regression theory of par-
tioulgr Jiterest arises if one considers the conditional distribution of,
88¥, 2y in a k-variate normal distribution; it is normal with a mean
which is a linear function of the other variates, 2z, @5 * * * 5 & The
woefficients of these variates (corresponding to what we have ca.lled.ozp)
are certain functions of the variances and eovariances of the original
Wultivariate normal distribution. Estimation of these coefficients
implies estimation of certain correlations and partial correlations.
There is an elaborale theory associated with this sort of correlation
“nalysis which was once regarded as a very cssential part of statistics.
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In recent years it has come to be realized that most (though not all)
correlation problems which arise in practice can be handled more
appropriately by regression methods. "The latter reguire only the
assumption that deviations from the regression funetion be normal,
whereas the corrclation analysis requires that the variate and what
we have called the observable parameters all be jeintly normally dis-
tributed. A good account of correlation analysis is given by Kendall
[2].

A rather complete treatment of the theory of least squarek and its
various applications may be found in [3].  In [4] are treated a great
varicty of practical problems in regression and con'pla’riéﬁ“armh s,

1. 8. 8 Wilks: “Mathematlical Statistics,” I’rmcutoﬂ Um\ ersity Press,
Princeton, N. J., 1943,

2. M. G. Kendall: “ Advanced Theory of Bm“c’BLms, Vol 1, Charles
Griffin & Co., Lid., London, 1944.

3. W. Ii. Deming: “Statistical Adjustmeit‘é of Data,” John Wiley &
Sons, Inc., New York, 1943, \

4. M. Fzekiel: “Methods of Correlation Analysis,” Jehn Wiley &
Sons, Inc., New York, 103Q) «

&\

13.10. Problems oY

1, Verify equations {2. 22) and (2.23).

2. Derive the likelifiood-ratio criterion for testing the null hypoth-
esis that the par r@;e’r a of Bee. 2 has the value ap.

3. Verily equaaﬁﬁons (3.3) and (3.6).

4. Verify eciuéJtions (23, (3}, ¢4), and (5) of Seec. 4,

5. Verifg equation (5.9).

B. Ve\rﬁ}f equation (6.3).

7. Verify equation (6.7).

" '8::\}iven the data:

) . T :
\“E| =61 ‘—o 72,89 —02| -2 —-3.9|338 —7.5 —2.]

z ~20] 0.6 14‘13: 00| 1.6 | —1.7 0.7;—1.3‘4-1

| I

fil. a regression line assuming z is normally distributed about & linear
funetion of 2, and find a 95 per cent confidence interval for the coefli-
eient of 2.

9. Plot the regression line of Prob. 8 and plot two curves ghow-
ing the 95 per cent limits of prediction ntervals for z in the range
-3 <2 <3
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10. Plot & 95 per cent confidence region for the fwo regression
parameters of Prob. 8.
11. Given the data:

¢ | 121 1.0 10.2 | 8.0 77 | 53 l 7.0 | 7.8 | 5.5 | 2.8

12 | 3] 4| 5| 6| 7T 8 | ¢

4]2_111'0

2 i

|
fit & vegression plane, and find a 95 per cent confidence intertm{.
for s, (™
12. Find o 95 per cent confidence interval for e of Prob. 1.
13. Test the null hypothesis that a» of Prob. 11 is 2010, )
14. What is the 95 per cent prediction interval for & &t z; = 2.5,
z, = 2.5 in Proh. 117 \Y;
15. Test the null hypothesis that a1 + 10az = Qm Prob. 11.
16, Using only the first two rows of the ita of Prob. 11, fit a
regression funetion of the form

v

N\

ey T oaZy ‘ha@%
N

and test the nuil hypothesis that qg::i-—; 0. _
17, Tho fitting of polynomials such as the guadratic of Prohb. 16 is
much gimplified when the val uls,arc equally spaced by using orthogonal

polynomials, Tet z = O, (0 . n. The first three orthogonal
polynomials are \ A\
N
P 1 :: 3\-"‘ §

:\“ n\’ _an+ 2)
4 12

A\ 3 1
N, eV 242 f%( _IE)
ROMEE O R

EP[J)Q = EI)]_PS = Z-P:EPS =0
i z 3

18. Rework Prob. 16, fitting instead the regression funetion
ag + alP1 + at’

where Py and P, are defined in Prob. 17. o
9. 1t 2, and Zs have a bivariate normal distributio
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coefficients (in terms of 11, o2, and p) of the regression funetion for the
conditional distribution of z;? For the conditional distribution of z,?
If the two regression lines were estimated from the same sampls,
would they, in gencral, be dilferent?

20. Tf xv, 22, 73 have a trivariate normal digtribution, what are the
coefficients of the regression function for the conditional distribution
of z1, given x: and #;, in terms of the varianees and correlations?

21. If the correlation s of a bivariate normal distribution is zero,

show that its estimator 5 has the density N\
[(n — 3)/2)10 — j¥)e—v7 O\
V2 [(n — 4)/2]! O
for samples of size . N

22. Referring to Prob. 21, transform plo a 11\{"fa,riate

Lo g fn —2
= p —]_—E):K\:

showing that it has “Student’s” digstifi%ution with n — 2 degrees of
freedom so that the £ tables may be tiséd for testing the null hypothesis
p =0 o0

23. Assume that the data @f"Prob. 8 are from a bivariate normal
population and test the null Iypothesis that p = G,

24. When p is not zeroj the distribution of p is not a simple function,
but it has been tahulﬁk}d for », the sample size, less than 25. Ior
larger n, Fisher ha&shown that

1+5
11—

e lion
’:‘.\ g8

is app@dﬁiately normally distributed with mean

o\ I
\dnd variance 1/(n — 3). Using this result, estimate roughly a 95 pef
cent confidence interval for o of Prob. 23.
26. Derive the X criterion given in equation (6.3). _
26. What is the maximum-likelihood estimator of the multiple -
correlation coefficient R, ., {defined in Prob. 27 of Chap. 9. .
27. A variate z is distributed about a linear regression functioh
« + @2, by the density

J@ =1 atp-lg<z<atpetli
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Fiad the maximum-likelihood estimate of the regression function,
given the sample of four points {x, 2): (0.3, 1), (—0.6, 2), (—1.7, 3},
(~18, 4). Compare it with the least-squares line.

98, A variate z is distributed about « 4 B2 by the density

f@) = Y > atfs
= lgpa—apz < at fz

Fstimate the rogression funetion given the sample of four points
@z, 2): (3.4, 1), (7.1, 2), (12.4, 3), (1.5, 4), Compare it with they
least-squares line. R

29, A normaul variate z has mean a 4 fz and variance o% (Thg
parameter # can tauke only the values zero and one. Seb up altest of
the hypothesis that 8 = 0 and compare it with the test of the}gquality
of means of twn normal populations with the same variguge. (If the
two means are py and pe, leb @ = uiand B = ge — g

30. Referring to the situation deseribed in thenBist paragraph of
Sec. 7, set up @ test for the null hypothesis &= 0. Assume that
there arc dn obscrvations, there being n forreach of four treatments:
no fertilizer, nitrogen, potash, both nitrqgej,xéhd potash.

ay
L e
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CHAPTTR 14
EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

14.1. Experimental Design. The general subject of experir@ntal
design is Loo broad to be included with any degree of completensss m
this book. It compriscs the processes of planning c€pefiments,
analyzing the results, and interpreting the results. W¢ate primarily
concerned with the last-mentioned problem, whield +In so far as
statistics is involved, is a malter of statistical infafente. The tech-
nique for making inlerences is known as the endly$is of variance, and
it is that technique which will be studied in $iigchapter. In order to
motivate the study, it will be instructive, desvever, to consider briefly
some of the general aspects of experimenth! design.

An experiment is intended to find s something about the relation
between two or more variables, Fo¥ example, oue may wish to dis-
cover the effect of carbon coujﬁerﬁ- (one variable) on the hardness
(recond variable) of steel; thig effect of a drug in preventing colds;
the value of paint in preset¥ing wood; the effect on flavor of meab
caused by cold storage; gt ko on.  Any experiment may be thought of
as an investigation efgaftinction of two or more variables. As we have
noted in the firstychapter, some variables may be entirely unwanted
but must in theyhature of things be involved in the experiment, In
the terminolgdy”of experimental design, onc variable may be called
the su.bje:c(tbf" the experiment while the other variables are called
Juctors, \Fhus, carbon content is a factor which affeets the hardness
of stgeh(the subject of the oxperiment); freezing (a fuctor) affects the
fiavor ‘of meat (the subject), .

“NTa planning experiments, one has on the one hand certain pr-
Ciples of experimental design, and on the other a Jarge elass of geomet”
cal configurations, specific experimental designs. In accordance With
the principles, one fits a specific design to the projected uxperimepi-- ]

In the course of this chapter we shall illustrate some of the prinﬂlplef
and give examples of a few very simple designs. But: first we may
observe two important principles of design which are largely mabters
of common sensc and experience. The f{irst is: every possible outeome
of the experiment must be anticipated and a conclusion decided upod
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for each possible outcome in advance of performing the experiment;
For example, suppose & man claims he ean read his wife’s mind to Lhe
extent that he can very often tell whether she is Iooking at a red or
black playing card. To test this contention, the following experiment
is to be performed: His wife is fo look at cards drawn one by one
trom an ordinary deck, and the man is to say in each instance whether
itisred or bluck,  Jf the whole deck is to be used, therc are 53 possible
outcomes; he may call 0, 1,2, » - 52 of the cards correctly. And
let us suppose it it agreed to accept his claim if 40 or more are called
correctly and to reject the claim if 39 or less are called correetly. This
simple experiment is now completely designed in the sense thaf £hd,
conclusion is only a matler of performing the experiment, obs€rymng
{he number correelly called, and adopting the appropriate conglusion.
Tf it turned ows, for cxample, that 30 cards were calla@yeorrectly,
smong them 12 of the spades, the man might argue:t-}iat he had
demonstrated his ability because the probability of calling 12 spades
correctly under the assumption of random callingis'so very small a8
to make that assumption absurd. This arguméntis not valid because
any set of 30 cards can be found to have somte peculiarity which would
make il highly improbable under randoa sampling. (In particulal,
of cowrse, the probability of drawing, any specified set of 30 cards is

32 ™ .
1/(30) o 101 for random seléstion of 30 cards withoul replace-

menl.) Any inference f]_'on}“écperimentai data cannot be supported
by a fidueial pro}mbility’\éﬂzﬁ’tement unless that inference was taken
account of in advanco’df the performance of the experiment. ARy
seemingly significamf/but unforesecn inference can only suggest a
new experiment, pMfollows, of course, that an experimenter who does
not anticipate §hy inferences at all but merely waits Lo see what will
t}lrn up in ¢he data, cannot support any conclusion whatever by a
fiducial plobability statement.

I:h"\ﬁe}?tmd broad principle we wish to mention specifically is this:
thefs, shust be an element of randomization n the experiment. An
experiment is performed to test a hypothesis, or 0 estimate a paraie-
tier or a got of parameters. The hypothesis adopted is supported by
odds baged on g computation which agsumes random sgmpling under a
m U hypothesis. The parameter is cstimated by a confidence interval
Yith & fiducial probability determined by the assumption of random-
ness. 1t is quite evident that the results of an experiment canpot be
Supported by probability staterments unless the sampling W
Tandom.  Referring to the card-ealling experiment deseribed above,

317

g5 in fact



§14.2 IEXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

the null hypothesis is that the man has not any ability Lo call the cards
correctly. ‘The probability of ealling 40 or more cards correetly is
roughly .0001 under the assumption of random calling, and the null
hypothesis would be emphatically rejected if 40 or more were called
correctly, provided random sampling is operative under the nyll
hypothesis. The proper condition obtains if the cards are presented
in a random order (by thoroughly shuflling the deck, for example), for
then the result of the experiment will have a random sampling distri-
bution under any system of calling which is independent. of $hé actual
sequence of colors of the cards. (It is tacitly assumed heze that red
and black will be called in about equal numberg, that ond Will not eall
all 52 cards black, for example.) One could, of course, present the
cards in some order particularly devised perhaps tof E‘.'d'nfuse the ealler,
and the caller might nevertheless be quite suceessfidl and establish his
ability beyond reasonable doubt, but one coylifiiot measure his suceess
in probability terms. Statlsmcal mforen(,e{s dmpogsible in nonrandom-
ized experiments.

It has been found in practice that pe\bons cannot be relied upon to
write down random sets of numbers abwill. Randemization in expeti-
mental design must be carried oot by actually tossing coins, casting
dice, drawing numbered chips: from a bowl, or the like. Specially
prepared tables of random} umbers have been published to save
experimenters the troubléof performmg these opomh{mq

14.2. Analysis of V@r\ance in Regression. The analysis of variance
is a technique for ﬁegtlng linear hypotheses, and hasically it is just the
technique described in the preceding chapter. All we shall do in this
chapter is studysthat technique in more detail and investigate simpli-
fications ths@can be made in applying the technique to certain special
problemg*that arise frequently in practice. The point of view, how-
ever, \NTH be somewhat different, and to illustrate it, we return to the
mm’p}e linear regression problem.

(Letus: suppose that a variate x is normally distributed about a regres
gion function & 4+ Bz with variance 2. A sample of size n i8 ubser‘:fed
(1, 21), (23, 22}, * * + | (%m, 24). Let & and § be defined by equations
(13.2.8) and (13.2.9). The sum of squares of deviations from the true
regression will be divided into two parts as follows:

2@ — o — fz)? = 2@ — & — foi + & -+ Ba — o — p2)°
= Z{x; - & — ﬁz@)g
+23(x; - & — Bz)(@ + B — o — B2
+ Z(@ + Bz — « ~ 82)° )
318
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The middle sum on the right of (1) vanishes identically, as may be
geen by performing the summation and using the definitions of @ and 8.
The first sum on the right of (1) is the sum of squares of deviations
from the estimntied regression function; it is just né? where ¢* is the
maximum-likelibood estimate of ¢ defined in Sec. 13.2. The third
qum on the right of (1) is, apart from & division ¢?, the quadratic
form (13.2.30) in the distribution of & and 8. 'The total sum of squares
on the left of {1}, on division by ¢7, has the ehi-square distribution with
n degrees of freedom; it has been partitioned into two parts which are
independently distributed by chi-square distributions—one withn —2{
degrees of freedom and the other with two dogrees of freedom. A
The third sum on the right of (1) may be further partitione({ itito
two parts each of which are independently distributed by chiz¢quare
laws with onc degree of frcedom. Tt is apparent from (13,2:30) that
@ and 8 arc not independently digtributed except in t}}pig,pécial case in
which 3 = 0. Howevct, £ and 3 are independentiyndistributed, as
may be seen by changing the variable & to z ugigg;the substitution

a:z—&nq§’ (2)

in the joint distribution of & and 8. L fa.c%, 7 and § are independently
normally distributed. In terms ofl these variables, the third sum of
(]-) iS ,j . ¢

E(& + 32‘: —x — 1836)2 =‘{E§é . Gz + }‘3‘3", R ﬁz‘)'z
L3z — a9+ (¢~ OB
e 33— a— 2+ ME - BTG
<5’=n@Fa—ﬁp+@—mmm—w 4)
The sum of ‘cfols products has been omitted in (3) because it i readily
s6en to vaAish since Z(z; — z) = 0. The two terms on the right of (4),
apart, f{’bfﬁ a factor —20?%, are just the exponents in the univariate
1 rm@L 'distributions of # and 8; hence they are independently dis-
tributed by chi-square laws with one dogree of freedom. _
The total sum of squares of deviations has now been partitioned into
three parts:

2@ — o — B2)% = Tz — — fz)? 4 — 8)es(z — B)°
B:) Tz — & — Pzi) + (8 izn(f-a—-ﬁi)z )

each of which it independently distributed by chi-square laws. We
tarn now o the question of testing whether « and g differ from zero.
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If, in particular, & and 3 are put equal to zero throughout (5), we have
Zr} = 2w — & — Be) + B:Z(z — 2)? + a2 6)

All these terms are directly caleulable from the data, and in the analysis
of variance, this partition of the sum of squares is usually exhibited
in a table such as the one given here, In u pariicular problem, the
entries in the table would all be numerical.

ANALYSIs OF VARIANGE rOR SIMPLE LINTAR Rrazession LS

| i N
De- 2\
recs S
Bum of g « W
Source of Mean square O " ratio
BQUAres . £
free-
dom '\g ;
M 72 1 inpe win — 217
Slean Hr ] nF ? —
7\ Sz — & — fa
- : & . —
— _
. ) . N in — 3§ T{n — At
Slope | 52x(z — ) 1 8o T WYaS
o\ o Tim — @ gu)t
Devi- AN
. Tl — & — G200 g -0 — & — g2t
ationg | (@ — & Bzi)® | u ~.2:’n — 5 Z @ — & — 320
_‘ |—" —_— "’_‘ - - _—
Total | S ...,’\ n

K
N\
Now let us comsider the nyll hypothesis that 3 = 0. If it is true
then the sumg 68 squares in the sccond and third Tines of the table are
independently.distributed by chi-square laws with 1 and n — 2 degrees
of freedomnfon division hy %), and the ratio of the mean squares Wi.ll
have the¥™ distribution with 1 and n — 2 degrecs of frecdom. Thisis
exactly“the test given by (13.2.32) because the square of a ¢ variate
With & degrees of freedom has the F distribution with 1 and k& degrees of
Nfreedom (Sec. 10.6). The sum-of-squares entry in the second lme
of the table is said to be the portion of the total sum of squares 3%}
associated with g. '
Now let us turn to the first line of the table, The F ratio in the first
line provides a test for the null hypothesis, o = 0, only if # is assumﬁd
that § = O (unless Z happens to bo zero). Thus the two F tests indi-

caled in the right-hand column of the table are of two different kinds.
The second one tesis

8 = 0, whatever o may be
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the first one tests

« = 0, provided 8 is actually zero

These statements are evident on comparing (5} and {6). The first
terrn on the right of (0) has the chi-gquare distribution whatever « and
g may be; the second term has the chi-square distribution whatever
« may be provided only that 8 = 0; the third term has the ¢hi-square
distribution only if & -+ g2 = 0.

The two tests on o and 8 are said to be nonorthogonal.  1fit had been
possible to partition the two degrecs of freedom for a and g into tFe
single degrecs of freedom, one involving e only and one involyibg B
only in such a way that they were independently distributed, {hen we
should have had orthogonal tests of « and 8 and could Jestia = 0
whatever @ might be. R4

If in collecting the data, the values of 2 are chosen 80 that z = 0, then
orthogonal tesiz of o and 8 are available. For theha@ becomes equal
toZ, and in fact the & test indicated in the first ing of the table beeomes
equivalent Lo the ¢ test given by equat-i'm': (13.2.31). It is to be
recalled, of course, that we can test ¢ = © Avithout assuming § = €
by using that ¢ test. ONY

The condition of orthogonality jis ‘rlégacrded as desirable because it
provides 4 partial measurs of stafiét"lc-al independence in tests. Sup-
pose 2 = 0: then the two tcsgg’of « = 0 and 8 = 0 are still not statis-
tieally independent becaus(‘th’e two F ratios have the same denomina-
tor. If one worked omt the joint distribution of the two ratios, he
would find that they are’hot independently Jistributed. But the fact
that the two numcraiors of the F ratios are independently distributed
has some intui;tj{-{(;\ﬁppeal. Tt is usually impossible to design expeti-
ments so as thpet completely independent tests, bub it is often possible
to design them so as to get orthogonal tests. Thus in the present
examplesone can investigate a regression function « -+ 8z by means
of tHe“wo ¢ tests described in Sec. 13.2, and these tests are nonorthog-
onal ¥ general; it may be possible, however, to select z values so that
¢ = 0 and thus obtain orthogonal tests. .

From the practical point of view, orthogonality is quite desirable
beeause the analysis of data is usually very much simpler for orthog-
Onfhl than for nonorthogonal designs.

Test of Linearity. DBefore leaving the linear regression problem we
shall consider one other test whieh is quite useful when the data are
Such that if is fessible. Suppose that for one or poTe of the z values
there arg two or more z observations. More precisely, leb there be &
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distinet values of 2—=21, 2, - - -+, zx—and let the 2 ohservations he

denoted by 2., where s = 1,2, - -+ | kand? = 1, 2, n.. Con

responding to z., there are thus n, & observations, and we assume that

not all the n, are one. Letting n = 2 s, We may velabel the iz, calling
&

them 2y, @, - - -, z, and perform the analysis already deseribed.
The deviations from the fitted regression may he swritten
2 (o=@~ ) = 3 (v — d -~ e )
[ st

in the z,; notation; the 2, are all distinct, while the z; are ot with the
data under present consideration, O

The right-hand side of (7) will now he partitivned &% two parts as
follows: s

@
E (x“ - & — ﬁzs)2 = E (xa.t - ja’ "'_ E — & — 3.’5&)'2
s at AL
ﬂ ) 7 .
=) = 2+ FES @ - b
a XN/
=2 (o — B & T nlE, — @ — fz)? ®)
st N M

where %, = E Ta/%, The ﬁysi:?s'l;m on the right has the chi-square
t s .
distribution with Z (r, <’1) =n — k degrees of freedom, whalever
e

the regression funciz’é«{\?ﬁay be. For, for fixed 2, z is normally dis-

tributed with varignce o2, and the sample Tuy Tie, v v, T Of W

observations fox'd = 2; provides & sum of squares E (zy — F1)% which
) :

on divisiog»ﬁ%,}o-z has the chi-square distribution with n; — 1 degrees
of freedgﬁ‘\" The first sum on the right of (8) is simply the sum of al
such _ehissquares for the various values of z. The sccond sum of
SQUAYSS on the right of (8) has the chi-square distribution (with & — 2
“Jegrees of freedom) only if the regression funetion is in fact of the form
a¢ + 82, Thus

F o 2T — & — Bey2/(k — 2) ()

Z (T —~ )%/ (n — k)

&f

provides a test for the hypothesis that the regression function is of the
form o + 8z, and the critical region is the right-hand tail of the F
distribution since a regression function different from e -+ 2 woul
tend to increase the deviations of %, from @ + fz,.
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Though this device is called a test for linearity, the same technique
eould obviously be used to test the validity of any specified regression
function provided the function was Hnear in the unknown coefficients
and there were fower coeficients than distinet values of 2.

14.3. One-factor Experiments. As an illustration, let us suppose
that a factory manager wishes to buy machines to pexform a certain
operation in & produclion process. There are four companies which
make such muchines, and he obtaing one on trial from each company »
with a view to determining which of the four is best suited to his
purposes. Suppose also that a machine is opcrated by one afamh,
The manager inlends to have seversl of his men operste the mq@hinés
for a few days in order to discover which of the four producgs.%l}e most
items per day. In this simple experiment the subjeet is thenumber of
items produced, and the single factor is type of mach;’m}\

Tet us suppose that twenty men are to be used juMhe experiment,
five being assigned at random to cach machine, andthat each man will
work one dav on the particular machine he sfasassigned to. There
will then be five ohservations for each of\the four machines, each
observation heing the amount produeed\by the machine in onc day.
The data might: be such as appear in\the accompanying table. The
question of interest is whether or qi{;’t' the machines are different with
respect to number of items produced; ie., is the subject of the experi-
ment affected by the fact-orxbéing investigated?

NN achi
N\ Machine nutnber

e 2 3 4

£ t\ o
\"\ 64 | 41 | 65 | 45
O\ 39 | 48 | 57 § 61
N 65 41 56 | b5
<O 46 | 40 | 72 | 48
\ y 63 57 64 | 47

In order to analyze these data, the following assumptions will be
Made: the five ohservations for machine 1 constitute a random sample
f?‘om a normal population with mean £ and variance ¢%; the observa-
tions for the socond machine are an independent random sample me.n
3 normal population with mean & and the same variance o2; and simi-
larly for the other two machines. The assumptions are thus:

1. The samplos are random.

2. The samplos are independent.
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3. The populations are normal.

4. The populations all have the same variance {(often ecalled the
assumption of homoscedasticity).

In the general one-factor experiment, the factor will appear at &
levels (instead of four); the obscrvations will be denoted by a2y, with

=1,2 -+ ,kandj=12 -+, ng allowing for the possbility
that there may be different numbers of observalions at cach level,
The joint density of the zy; is the product of the individual densities:

Eoowg QO

T\ (/20 T X (ra—g A ¢
( —) e i=14=1 AN (1)
s - " ~
hY P { \

where n represents Zn; The null hypothesis Lo haf “f&wtod ig that
fi=fHh=f= " =& One could obtain a 58 by the likeli-
hood-ratio method, iLe., by maximizing (1)} \\11&1’}9&1)9(1‘ to all the
parameters, then with all & made equal, and ueiig the ratio as a test
eriterion. We shall, however, proceed diffefently.

The average of all the population meamﬁ.\v}ﬂl be denoted by §,

£ = EE _l\‘ o (2)

*

[P .~:. a
N

and the deviations of the & ‘rrom £ will be denoted by
(254 w\E - é Zniab = 0 (3)

The &, are called the %@cis of the factor; the cffeets arc zero under the
null hypothesis, ALSO we shall denote the ccll means by

\Y;

O - 1 ] {4)
“\,:\ Ty = e j Fij
and the. ‘I’rﬁan of the whole set of observations by
ot _ 1 1 = 5
\”\3~' m=;ﬁ2:m;=52mx‘; (3)
5 %

The sum of squares of deviations from the population mean for the

observations in any one cell may be partitioned as follows:

E ('le - Er Z (Tu o + E — E‘-’)g
= 2 (x5 — Z)? + ni (B— &)° (6)

and the two terms on the right of (6) (on division by ¢%) have fude-
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pendent chi-square distributions with 5 — 1 and 1 degrees of freedom,
g5 follows from Bee. 104, On swmming (6) over ¢, the total sum of
squares is partitioned into two paris:

Z, (w; — &) = Z (zg — 2 + E ni(% — &)* {7)

independently distributed by chi-square laws with » — % and %
degrees of freedom.  The second term on the right of (7) may be
further partitioned:

S‘??("—E)z—Eﬂ«;(&,_“g—f—ag T — §)?

.\:\'
= Z (@ — £ = e +uE - B N8
The two terms on the right of (8) arc independently dlst‘rlbuted by
chi-square laws with £ — 1 and 1 degrees of freedom, az\mhy be shown
by an srgument entirely analogous to that employ(‘d in Sec. 10.4.
We have then N

Z(xu - &)2 = \1 (J'a;l - xt)2 + E ”"L(xl - x Axr‘) + n(x - E)Z (9)
a7 £

snd this p.utmon is usually exhibited jnlan analym&of—varmnce table
such 45 the accompanying one w 1th thc paramecters put equal to zero.

ANATysls OF VARIANCE, FOR O\L-FAFT()R FXPERIMENTS

DQ-
o ‘&es ;
Sourec Same of | *\ Ilean F ratio
SIS . trc(‘— Aguare
\ dom
Mean 1
"" 2 i 31 = .’E)g - .
- NN 2 ng(Fe Z (& — x)“/(ﬁc - 1)
4 l'-"tﬂs\.“ = It _ mhe — "”_ - =
e\ } ni(® — 2)% |k — 1 =1 Z 2y — x,)’/(n - k)
E (x;'; — &)°
Devviat; 7 o
rintions '{‘ (s — £)? | — k| T
u
‘1Dta‘l E -'t?l. H
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The ratio in the right-hand column obviousiy bas the ¥ distribution
with ¥ — 1 and n — & degrees of freedom under the null hypothesis,
a; = 0, and thus provides a test eriterion for that hypothesis,  Ordi-
narily there is Do interest in testing £ = 0, bul if thews is, the quantity
ni? divided by the mean-gquare deviations will have the F disiribution
with 1 and » — k degrees of freedom under that null hypothesis. This
latter {est, incidentally, is orthogonal to the test on a;, for the term
on the right of (9) does not involve the o ~

14.4. An Application of Normal Regression Theory. "The foregoing
analysis of the onefactor experiment is somewhat artificisd@inthat the
partition of the sum of squares seems to have no particulflymotivation,
How would one know to embark on such an analysisid she first place?
Having developed a logical theory of lesting Iin{;:-mi*}ly[fx%h%% in the
preceding chapter, why not apply it here? 'F’ﬂ}\mm\vel’ iz that the
foregoing analysis is relatively simple, whergasYhe application of the
general theory involves some troublesoms/algebrai- manipulation.
As experiments become more complicatdd? the algebrs of the general
method becomes quite complex, inveling, as it does, the inversion of
large matrices, With expericnce,'ont can develop a facility for par-
titioning the sum of squarcs aﬁpri}priatcly and thuz save himself a
great deal of mathematical adalysis.

The simple partitioning of*the sum of squares happens to give the
correct tests when testg@re orthogonal, but it does not prove, without
advanced mathem t(éal" arguments unavailable to us here, that the
tests are correct..x rigorous derivation of Lhe tests does require
applicalion of Al general theory, and we shall illustrate such an
application fér the ono-factor experiment.

The & nQr}la,] populations of Sce. 3 may be combined into a normal
regmsy’Qﬁ*éystem with mean

& p= Y 0
'®) 9 . 3
where 8; is an observable parameter defined to be one when an observa-
tion is drawn from the ¢th population and zero otherwise. The mean®
£ thus become coefficients of a linear regression function. It 33
simpler, however, to sct up the regression function in terms of the
&’s so that the null hypothesis is in the form o; = 0 rather than
f1 = E2 = -+ = {, Le, in the form of (13.6.4) rather than (13.6.8)-
To this end, we write (1) as

w= &+ T @
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AN APPLICATION OF NORMAL REGRESSION THEORY §14.4

but now we huve ve too many parameters because the a; are connected
by Zme; = 0. We shall eliminate e, from {2) by the substitution

= _
oy = — — oy (3)
iz
1
and get _
k—1 B-1
u-‘-E‘I‘Eaﬁdi —5:.211;%
E—1 Tor A ¢
= o 5.'——‘5&)'1'5 4
3 N\ ¥
El’ ( e O
Now we define new observable parameters z, by ~'\‘
’ "\'\Q‘
7 NN
&p o= 0, — ;f;; 0 P = 1,2 " k _\*\1" (8)
1 =k 7.\ ®
R
o, forp = 1, 2 s k-1, N\
Zp = 1 if 1353"’?‘&5‘::: =P
= — M S hasi=k )
T N©
= N otherwise
e
The regression funetion is\ﬁ\(\n(-'
O E—1 .
2= Y et i @)

:o\;w} 1
& i identi 1
and s of the ( | discussed in See. 13.5, where £is to be identified with
the oy, of th'a}\t‘ section.

SincesqBvionsly,
peagPviously, ‘o ©)
We have at once the estimators :

. 10

&4:55—2_3 E—_-l)z}-'.’k—l (
P (11}
(12}

62 = %E (2 — 2)°

o that we

The test of the nuil hypothesis, o; = 0, is given by (13.6.6) s
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must only evaluate €, which is defined by (13.6.5). To this cnd, we
must examine the matrix |ja,,|| delined by

Upg = 2 ©piiZaij {13)
if

ginge the sum on 7 in Sce. 13.5 refers to the sum over all sumple observa-
tions and becomes the fotal sum over € and j in the present example.
2m; 15, of course, the valuc of z, for the observation zy It follgws
readily from equation (7} that the matrix is

N ¢
2 AN
| Al nan Ra ITCTIRTE @ M
) tha 1R TR O
lng + e mre= CeL ML ONS D
| - R i (G
CFEyFL nsy  Tieht HatiE D
if 1 '!. o _]_ i} _3_3 P T) 'l_\_. 0
by g Fix %
ond| = ‘ AV (14)
¢
J & 2
oty 1 ol gty G ] 0
itodiial et DRERLY . PO
T (5 g Ty
0 0 a0 - { 7!

To obtain the coefﬁcient&b;; which appear in ¢, onn would ordinarily
invert (14}, then strikcmfif the last row and column {m being &/ — 1 in
the present cxample)\i;hén invert the result. This work 1s not neces-
sary in the instancdat hand, for @ is the quadratic form of the marginal
distribution of thed, (w = 1,2, - -+ , & — 1), and itis apparent from
the form of ( 41,1?]{313 the &, and £ are independently distributed. That
is, becausg»{;ﬁ the zeros in |'a,,), the joint distribution of the &, and £
may bg«}\w"i’ftcn as the product of a function of the & alone and 2
funcjc»iép. of £ ulone. Tt is cvident then that

...\'o .
~\J Buy = o wp =12 -, F—1 (15}

hence that

E—1
2 = Y L Pt v — e — (18)
Q Z (ﬂuauv + e ) ( ] u)( L )

w,o=1

In this expression we put the 's equal to zero, and we may substitute
from (10) for the &'s 1o obtain

) = Enu(fu — 3?2+ El-k E Rytte (Frs — D Es — %) N (1?—)
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The second Lerta is simply
k—

1 [\ o (T, — E)JQ = _]_[ El {(nuBy — (m — 'n,k):'z':jl2

iy 1 T
u 1

1
— 0% — mTy — (n — m)I)?
(3

n;(a'" — ..’3‘:‘,:;)2

I

Thus € becomes .

VE

Q=5 ) m(@ — 7 )

21 2 AN

and the F ratic (13.6.6) is O
SndF — B2k — 1 . )

p oo Znl@ Z DYk 1) N (19

Tz — T (m— k) e
the same as appents i the analysis-of-variance table of"t:hé preceding’
seetion, \

We have shown, incidentally, in this section tHatthe two terms of
equation (3.8) are independently distributed byf\chi—square laws,

14.5. Two-factor Experiments with One/Observation per Cell. It
may have been noticed that the expellircken"t described in Sec. 3 was
very poorly desizned. The {rouble 1& that there is an extraneous
factor, ability of the various worlkfoen, which must necessarily enter
into the experiment. If, in thetexperiment of Sec. 3, t-h(‘a producticn
from one muchine turned outde be relatively large, was it duc to the
machine, or to the exceﬂqﬁqé&e of the particular group Of_ workmen
assigned to it? Thereddy no way to tell from that experiment. In
the language of experfitnontal design, the effects due to machines and
the effeets duc to eredps of workmen are completely confounded; there
I8 10 way to difféyentiate the two factors.

The difficulty is removed by redesigning the cxperiment as a two-
factor expetimicnt. Let, for example, only five men be involved in the
experimint and let each of the five men work one day on each of the
four‘sogchines. The order in which a given man works on the fourl
Machines would be assigned by a randem process. The dafa are now
dassified in g two-way table in accordance with the two factors and
Might appear as in the table on page 330. When a two-factor
eXperiment is used {o control an extraneous factor as in the case here,
Fhe design is referred to as a randomized block design. The facto;‘ of
Mterest is compared in blocks (men, in the present instance) 50 thﬁi
tonditions of the comparizon are homogeneous within each bloe

though, they differ from block to block.
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Machine

1 2 3 4

1 53 47 a7 45

2 bili] 50 63 . &2

é 3 | 45 47 54 43
N\
4 52 47 57 41
O
5 49 53 5] ¢ 4% 2N\

| « N

i N
In general there will be, say, r rows and ¢ colunms for a twofactor

experiment, one factor being cxamined at r loyels, 41, da - 0 7, A,
and the other factor B at ¢levels, By, By, * - “\B.. The observations
may be denoted by %, ¢ = 1,2, « - - ,r,a0dy = L2, - - -, 6 Itis

assumed that the z; are random independent observations from normal
populations with the same variancesh\Mt is further assumed that the
effects of the two factors are additivé. This last assumption will be
discussed further in Secs. 6 and™9. Analytically it states that the
mesns of the normal populaﬁilbn" associated with the individual cells
are assumed o be of the fori

Ny = e+ B 0
with X\
) ey =0 28 =0 @)

The param(;te?.\ s the average of sll the population means. In terms

of the illugtrative cxample, the most akilled workman will have a

positive}& associated with him, and the assumption (1) states that

Whﬁ»t-i.’:}fer machine he works on his production will be exactly « (0
mt-helfp'opulat-ion mean) larger than the mean production of all workers
\o‘n"that machine. Or in other terms, if one workman is 10 units better
than ancther on one machine, he will be ten units betier than the other
on all machines. Similarly if one machine is 10 units hetter tl}&ﬂ
another, that margin is assumed to be the same (in the populatio?
means) regardless of whether a workman is good or bad.

In the general two-factor experiment, the two null hypotheses of
interest are a; = Dand 8; = 0. (In the illustration we are using, there
is, of course, little interest in the a's.) We shall therefore tr¥ o
partition the total sum of squares into parts, one of which involves the
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a;, another the 3;, and another £, The proper procedure is suggested
by the estimaiors of these parameters, which are readily found to be

A __1 .
E'—x—m s Eif 3
W

- _ 1 _ .

&s=$e.“$=gzxﬁ—$ (4)
F

r - - 1 -
Bi=x-f—5=;2$a‘:‘—$ ®)

7 being the mean of the observations in the ith rowand Z; the.m'e;z.h'
of those in the jth eolumn. The total sum of squares may he)par-
titioned as foliows: N
Y= E i — )2 =Y (g — T — i+ ) ESTE - @)
i i 7

+ @ —% _{Qz} 4@ - 9 6
= Z(ﬂ;g‘f — & — ;7‘_,_2--!- 5)3+c2(x,;_ — I —g&z‘\.
g i O

+ 7Y (g o F— B+ re(@ — B ()
Equation {7) is obtaincd by squariig the expression in (6), using the
grouping indicated by the parcutheses; then if is easily seen that the
eross-product terms sum to zére.

¢ J
£ N’
ANALYEIS OF VARTANCE FOR’QX’D-FACTQR ExrerIMENTS WITH ONE OBSERVATION
\

O\ prr CELL
A</ - F
e Ee) Degrees of
Source b‘dr:n\uf..squareg frif‘dom MMean =square ratio
— A I R —
N _ .
Mean “" reE? = 8, 1 8; =8 o
_— ..\': \ _____’S________,___s__.
“s\./ X - s 2
4 effecly c;(i‘-s. — E)T = S8, r—1 1" &
V¥ -
R . _ 8 _ s
effect ‘-“E_(f,j-“w}“=33 e—1 c-—__l-—sa n
- E I [ D
Devi- ; . Sy =5
ationg ‘Z (Ze; — &, — &4 + &) = H|r — e — 1}{_?__7)-(5 —1) !
E— 7 I e
Tota] Z o o
———— i _
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§14.5 EXPHRIMENTAL DESIGNS AND THYX ANALYSIS OF VARIANCE

If we had some relatively advanced techniques at our dispossl, the
analysis would now be virtually complete, for then it would be possible
to argue that the four terms on the right of (7) are each independently
distributed by ehi-square laws (en division by o%—the first with
(r — (e ~— 1) degrees of freedom, the second with » — 1, the third
with ¢ — 1, and the fourth with onc degree of freedom. Assuming the
truth of this statcment for the moment, we may construect the lable
shown on page 331. The F ratios in the [inal column give ortho&mal
tests of three null hypotheses: £ = 0, o = 0, §; = 0. \

To demonstrate the validity of the above analysiz, we mughinvesti-

‘gate the tests more formally. Again the general theors of testing
linear hypotheses will be employed.  Tquation (1) may Be put in the
form of a linear regression function by defining ()b%@i\a.b & parameters

d; and ¢ so that ~\
8 =1 if @y has © 2NF &)
\\
=10 otherwisge
e =1 if i, h‘&s‘j = jf (9)
0 othertwise
Then (1) becomes '~ ’
to AEY Y e + Y, 6 (10)
N : i

€Y .
This relation involvés'olily # + ¢ — 1 parameters in view of conditions
(2}, so we shall eliminate «, and 8. from (10) to gel
\::}gg} = £+ (6 — Sar + 2le — e (11)
and as n&%\p( 4, new ohscervable parameters are defined by

.“@;’,r lifzshasi=1p
O = 1t ngbasi = r p=12 - ,r—1 (2
N =0 otherwise
2y = lif:t;;,-hasjmp—?'—l—-fll
= —1ifa; hasj =
if #; has 7 = ¢ p=rr41,- -
-2
= 0 otherwize S 4 + ¢
z'r+n.—1 = 1 (14

There are thus 7 4 ¢ — 1 observable parameters; the first 7 — 1 87
associnted with the a's, the next ¢ — 1 with the 8's, and the last one
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with £ The population mean is now of the form -

o1
arpZp (15)
. p=1
if we redefine
B; = ar144 i=12-+,e—- L (18)
E = drie-1 (]7)
The &, are given by equations (3), (4), and (5), and 4° is readily seen
to be A
] { t\“x'
R &

=%;—CZ(3:¢5—E&.5—Z!§:E:*§) .~\§ (18)

= 1— \—\ (e — & it I)°

, \',
2\
The joint distribution of the &, is normal, mth’bhé matrix of the quad-
ratic form defined by O
Uy Z zpa‘.lz qrf (19)
F) PN (s

and on evaluating these sums u-}irxg (12) (13), and (14), it is easily
found that

™ > 0 0 10
2¢ e S 0 0 i
’.| c 2c .si\\ .. 0 0 0 0 0
¢ ‘lc c' o 0 0O 0 iO
,.<2.\7
O - |
wMe e ¢ ... 20 0 0 ... 0 0
N . Ll e
GRS || i 5
P ' g 0 0 02r 7 ¥ ol
o 0 0 ol r 2r 7 0
0 0 0 o r T 2r g 10
0 0 0 0r 7 T 2r 0
0 0 0 g0 0 0 0 ird

N



§14.6 EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

There are r — 1 rows and columns in the upper left-hand bloek, and
¢ — 1 rows and columns in the block completely cuclosed by daghed
lines. The form of [la,,|| shows at once that the three sets of param-
eters (&1, da, =+ +, &), (By, By, - - -, Beep), and (£) are independ-
ently distributed; hence their quadratic forms

r—1

E ai(di — a)(@e — aw) (21}
c_ll.!’nl ~
y er1+f.r—1ﬂ"(3f — BBy — B7) O\ (22}
JJ":]. & \..'
re(f — £ > (28)

are independently distributed by chi-square lawdwith » — 1, ¢ — 1,
and one degrees of freedom, respectively. 1\})‘ three of them are
distributed independently of O
in”
red? [whichhas re — (r — 1) — (¢ — 1)\~* = (r— -1
¢ degrees of freedom]

in view of the results of See. 13, 0 \ These three forms reduce directly
to the last three terms of (J}, hence the F' ratios of the analysis-of-
variance table are all of thedorm (13.6.6).

14.6. Two-factor Experiments with Several Observations per Cell.
To ¢continue the 1ﬂustr£l:hon that has already been used, suppose again
that there are four\k\mdb of machines to be tested with five men and
also that instcad of one each of the machines, there are three each.
Every man works one day with all twelve machines, and the data are
elassified agmn in 8 4 X 5 array, but now there arc three ohservations
in each\dell corresponding to the threc machines of each type.

In geheéral, we shall suppose that there are r rows and ¢ columns and
thg{t, ‘there are m ohservations in each cell. There will then be et

~ghgervations altogether which will be denoted by iz (€ = 1,2, LY
\J =12 ---,¢e k=1, 2 , m). The observ d.th]’lS in t.he
(%, 1) cell are assumed to be a 1andom sample from a normal population
with mean &; and variance ¢?, the same for all cells; the cell populations
differ only in their means. The numbers £; may be put in the form

Lim bt ot Bt v g

Eas=0 Eﬁ:‘=0 E‘}’e:‘=0 Z’Yﬁ.;:O @
7 7 7

i
384
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To do this, one firat computes

E=:—c;’;’ii

a;"—"%z&f—f #3:'=%Z&f—$
7 £

and finally, the v, using (1). £ is called the mean effect; the o are
called the main effects due to rows, or briefly the row effects; the 8; are
called column effects; and the vy are called the row-column inferaction
effects, or simply the inferactions. When the inferactions are all {eﬁo,
the means &; are said to be additive (sce preceding section). | ™

We shall now partition the sum of squares into parts §}ifﬁé§ble for
constructing tests on the mean effect, row effects, colum effects, and
interactions, Clonsidering first the observations in a'gingle eell, the
sum of squarcs may be divided into two parts ‘jJ{St 4s was done in
equation (3.6): \\ i

?0:(5'7-‘:‘. - &y)® @)

then

Z (T — Ep)% = 2 (T — fir".)‘gz”&"

£ E o0
where Z;. is the cell mean and is the'estimator of . The sum on the
right of (3) hus & — 1 degrecs of fréedom, and the other term on the
right is independently distzibuted of the sum with one degree of
freedom.  Summing (3) Qﬁréll cells

E (@i — “z:ﬂ)z = E (T — Tg)t+m Z' (Zi. = &) &)
b O 7 i
™ .

the total sunmiAfsquares is divided into two parts independently dis-
tributed bg*ﬁﬁi—square laws (on division by ¢%), the first with r¢ (m—1)
degfee&o@ ftcedom and the second with re degrees of freedoFl. The
seconthsum of squares for the cell means may be partitioned into four
Parts\ist as was done in cquations (5.6) and (5.7) for the case of 2
single observation in a two-way table. The result 1s

mz @~ - — B — 1) = ‘mz (B — Fi.. — Td. + 7 — i)?
4 g .
+ mcz (B, — 7 — a)*+ mfz (3, —F— 6+ mre(® — £ (8)
K i

which differs from (5.7) only in the appearance of m and vs The

336

Q"



§14.6 VXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

symbols Z.. and Z ;. arc the row and column means

= [N 1 Nz
L= — Ty = -- Ty,
Ty mCZ/ Bl p ‘/_( i7
ik 7
_ 1 1 -
i = — S‘ Lo = — S‘ L.
T e A
ik T

while ¥ represents the mean of all the obgervations,

T# is now apparent why the population means were assumedo be
additive in See. 5; the first term on the right of (5} correspondsio the
deviation sum of squarcs in (5.7), and if the 44 were nol zevoyjt would
be impossible to carry ouf the tests described there, bcca’x@e the v; are
usually unknown parameters. IJowever an alternative model to be
described in Sec. 9 allows the tests of Sce. b to bg@ade in any case.

" Returning to the present problem, the total3@¥ of squares has heen
partitioned into parts which may be exhibitedws in the aceompanying
table. The degree of freedom corresponding to £ has been omitted,
as it often is in such tables, because shere is practically never any
interest in testing the null hypothesi§ phat & = 0. The three £ ratios
in the final column of the table muy be used to test the three null
hypotheses: oz = 0, 8; = 0, v5 %= 0. These arc the appropriate tests

~

! I
Soures Snm of‘.i?N'.Lres Tregrees of Fean srpnare F
€ ) . freacdors
I SN A\ _ [
N .
Row mcE fin s F1T =& r—1
N
Nt
Chlunn :1}\&,}2{\24 (£ — &)1t = Mz e—1
N J
4' £ {1 ...... [
Intcractj?n ] e (55, = Fi. — E4 + 12 = 8z (r - Tile — 1)
A i _|—
N > ” . —
\Dcvla.\‘.mns S (maie — E0 )t = Be relm — 1) — = #4
iy . refm — 1
Ak 1 N
Total T [zisk — FE ’ rom — 1
ik ' |

for these three hypotheses under the thooretical model uged here.

Actually in practice the row effecls and column cffects are rarely

tested in this manner. Ordinarily the two sets of main effects aré

tested by the Tatios s1/s; and s:/s;. These tests do not make sense U
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theoty with the present model if the yy; are not zero, for then 1t is

m Y (B = & = Ba b I vii)®
i

which has the chi-sguare distribution, not the quantity Ss in which the
v have been pul equal to zero. _

The rationale for comparing main effects with interaction rather
than deviations in an F lest may be indicaled as follows from a purely
practical standpoint: Using the men and machines illustration,
suppose the null hypothesis, y; = 0, 18 rejected. The implication is
that while one man does better on one machine than another man;
he may not do as much better than the other on a second machine or he
may even do worse. Suppose these interactions between men.and
machines are of the order of 3 or 4 units produced per day. Tt weuld
be quile surprising, in view of such interaetions, if the mzii‘ﬁ‘effects
were not at leagt of this order (3 or 4 units per day), (I fact, the
vanishing of the «; or 8; in the face of nonvanishing 9 vould rightly
be regarded as a pathological ease. Suppose the 87\(the main effects
due to machines) are, in truth, of the same or et ot magnitude as the
interactions. Then certainly the differeneds_between machines are
of no practical consequence, for one migﬁt'purchase what appears
to be the best machine only to have it aparated by a man who does not
happen to work so well with thatemachine, and better production
might have resulted had another machine been purchased. Obviously
machine differences are impo@gmt only if they are large relative to
the men-machines interagticons.

Arguing very c-rudelyj&sw, the sum of squares Sy in the table is a
meagure of the “variagiee” of the j; since

NS
RO
and §;is 5 m'\\sé;,:}{fe of the “variance” of the vy since
\\ Fiy = Ty — B — 5.:2@'1’ z

'\ )

tl‘h( TESHG $./s5 measures the relative sizes of these tyariances,” and
%f thd"ratio is large (relative to unity), the machine differences are
Mportant in relation to the interactions. These rough considerations
will be made more precise in Sec. 9. .

147, Three-factor Experiments. To augment our illust-ratn.re
example, the products of the machines in question may be made iz
Several different sizos, and for purposes of ‘the cxperiment three slzes
may have heen selocted for inelusion. There would then be three
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LATIN AND GRECO-LATIN SQUARES £14.8

factors: machines at four levels, men at five lovels, sizes of product at
threo levels. ‘The observations might then be arranged in a three-
dimensional table with 4 X 5 X' 3 = 60 cells, and if there were three
machines of euch type, there would again be three obscervations per
cell or 180 obscrvations in all.

In general, leb there be three factors 4, B, and € with levels ry, 72 7
respectively, and let there be m observations per cell. The observa-

tions may be denoted by Zugm, where b =1, 2, » » -, 73 =1, 2
ey f= 1,2, 00 e k=1, 2, «++,m. The observations
are assumed to come from normal populations with means & and

" yadances ¢>.  The means may be written in the form A

O I R e I

where any letter on the right sums to zero on any one of ifs Mdexes.
The Su, €, iy are called fwo-factor inferactions, or Jirst-order fwteractions;
the gy are called three-factor inferactions, or second-oidgr inferactions.
The details of partitioning the sum of squares aréso similar to those
of the preceding scetion that we shall merel . favesent the resulting
analysis-of-variance table here. The mean, &duares are obtaimed by
dividing the sums of squares by their corre;;ﬁohdjng‘ degrees of freedom.
The various null hypotheses (on = Q0 = 0, ete.) are tested by
dividing the appropriate mean sqqar"e‘ by the deviation mean square
and ecomparing the result with the eritical ¥ value. Here again, mosh
of these tests would be pOinﬂ{SS in many practical situations if some
of the interactions werc nonsanishing. :

If there i only one obskkration per cell, there will be no deviation
sum of squarcs, and i, ismecessary to use the three-factor-interaction
sum of syuares in igd\place. With the present model this substitution
Tequires the assyfeplion that the m are zero. : .

14.8. Latin\and Greco-Latin Squares. Latin and Greco-Latin
Squares are ’de\vices for reducing the scope of experiments which imr{.)lve
several faotors and for performing experiments when it is impossible
to abtaiyy’observations for all combinations of all levels of the factors.
As atMllustration of the latter case, we may alter the example already
used. Suppose four kinds of machines (one of each kind) must be
tested in one day and that a man must work ab least 2 1_1ours on &
Machine in order to get an adequate measure of his production on that
Wachine, The 8-hour working day will be divided into four 2-hour
beriods, but now s third factor has entered the experiment because the
bime periods differ, at least to the extent that the workmen may be
expected 10 be less eflicient toward the end of the day due to fatigue.
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We have then three factors: machine, men, and (ime periods. But
it is impossible to obtain observations for all combinations of all levels
since, for example, all men cannot work on the fisst machine during
the first time period. The difficulty iz met by setting up the experi-
ment so that all factors appear al the same number of levels. Thus,
sinee there are four machineg and four lime periods, we should use four
men in the experiment.

The experiment is performed by arranging the levels of one factor
in & Latin square which is simply a square array of letters sueh that
cvery letter appears once and only once in every row an ¢olumn.
¢\

LB | C D N

/

We may identify the four lofters ov th the four machines. The rows
and columns are assigned to thc other two factors, Thus if rows
refer to men and columns tg time periods, then the second man works
on the first machine (A) ‘during the third time period. Of course
this design could be ugsd*for any three-factor experiment where _&H
factors are al four 'lévﬁs each. Such an experiment would requre
64 observations fo}\aﬂ combinations, whercas with the Latin square
it can be done.fwith 16 observations; but of course this reduction in
size of the exXpbriment iz af the expense of precision in the results.

In gonm:ﬁ let, s suppose thut the three factors of a Latin squart
have r, wwels each and that the observations arc mix where 4, 4, k=1
2, ¢ .' , 7, and where ¢ refers to rows, j to columns, and % to letters in
the: square. The (k) is enclosed in parentheses to indicate that it 18
“wot independent of ¢ and 7. The obscrvalions are assumed to come
from normal populations with the same variance ¢2 and with means

Esg‘(k) = f "|" o + .3:' ‘{— Yx (1}

in which 3« = 0, 28; = 0, Zv; = 0. All interactions are agsumed
to be zero in this model

If we denote the row means by #;,, the column means by £.5 and the
means of obscrvations associated with the kth letter in the squat®

. (the ;vth ].eVe]. Df the thlrd fa,CLOI) by x(”’ th_(_, 211 Of Squq‘res may (_,EL‘!ll\
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pe partitioned as follows:

Y (mg — Eaoo)® = Tz (@~ Z— @) +rY &~ B
b i i

§14.8

+ 7 2 (Fay — T — v+ 2 (L — Ti. — &j — Fgo + 28)°
E 4

+iz — 5 2

All these sums on Lhe right are independently distributed by chi-

square

freedom. indicaled in the accompany

laws (on division by ¢%); the various sums have degrees of
ing analysis-of-variance tablel 3

The degree of froedom for the mean has heen omitted from the tqb\le\'

N

\

Degrees of ~.:"‘

Source Surm of squares <
freedorm,
— |l & &/
0”"\
Rows ru(E;, — i) r =NV
) — N
Columns ‘ rE(E; — £)2 Am—1
&
_ ———
Letters rE(Fryy — B3 N =1
—_— _.’.:‘_,"' — —_— ——
Deviations Swo; — & — & — At 2TP r—10r =2
Total i E(wy; — it ‘."" ri—1
o\

The three null hypothe

po ! R&
dividing the appropriﬁe%ucan square

and using the F dist{ibtﬁion.

L >

' >
O
.'\
e) )

\‘:

If the number of levels of tho factors is a prime
Uf‘ 4 prime number, then it is possible to
without increasing the number of obs
18 an arrangement of 7 Greck and 7
80 that each Creek and cach Lat

N

o, = 0, B

=0, yu = 0—are tested by

Aer |

Dy |

(o

D |

B,Sl

Aé

Dy |

o |

Cy | D
Da _C?—
AB | Ba
Ea

ervations.
Latin letters in an ¥ X r 8quare

in letter appears once a
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in every row and column and such that every Greek letter appears
once and only once with each Latin letter. Wiith such un arrangement,
Tour factors may be tested at r levels each, using only #2 obsewations,
while the complete experiment would require r¢ ohbservations. The
analysis-of-variance table would be similar to the one above for Latin
squares; there would be an extra line for Greek letters having sum of
squarcs rZ(Ze — )7 with r — 1 degrees of frecdom, and the error
sum of squares would become

N\

Z @i — &, — T4 — Bay — T +32)2
o ) 2\

with {r — 1){r — 3) degrees of freedom, The T, relzu'{.%sgnts the mean
of those observations associated with the ith Greek “Mtter.

More gencrally, when r i3 & prime or a power o{z{primc, it ig possible
to arrange r — 1 sets of r letters in an r X rdqiuic so that cach letler
of every sct oceurs once in every row and celmn and onee with each
letter of every other set. By means of ,@ll‘gh' srrangements, many fae-
tors may be studied in one experimentamith relatively few observations,

14.9. Components-of-variance Moadels. In thix section we shall
consider an alternative mathe;mitical modal for analvzing factorial
experiments. To introduce thelideas, we shall consider a two-factor
experiment with one obseryation per cell, the same situalion as was
diseussed in Sec. 5. The observalions are again denoted by ay with
t=1,2 -+, riapd\y = 1,2 +- -, 7. Tn this model the row
effects, the column é&"(‘:cts, and the interaction effeets are all assumed
{0 be random var;;}les. Specifically it 1s assumoed that

\¥;

“ :“' Ty = Uy + 0y + Wiz (1)
2\
:"\.50 .
where iz, * » - , U, Is a random sample from a normal population

With}%}“ean E.; the v; are an independent random sample from a normal
X population with mean £,; and the wi; are an independent random sam-
_plé from a third normal population with mean &,.

Altering the circumstances of the experiment in Sec. 5 slightly:
let us suppose that there are a large number of manufacturers of the
machines in question and that four particular makes were chosen 8t
random. Also the five men chosen to participale in the experiment
were chosen at random from some large group of men. Tt is assumed
then that these five men have production abilities uy, #s, * * - U
which comstitute five observations from a normal population. Sl_m‘
ilarly the four machines have productive capacities v, ve, ¥3, ¥4 which
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constitute an independently drawn sample from a second population.
The variables uy; may be looked upon as a sum of two variables, say
yq + 7, with the yy interpreted as the interactions between men and
machines and ihe z; consisting of miscellaneous minor effects which
ifluence the finel cbservations. These two variables y and z are
assumed to be novmal random variates, and their sum 1« will then be a
normal random variate. _
Referring back to equation (1), if we let

E=€u+&-+<§w, avi:ua'_"gw bjzﬂf'—zu, ct'f=w€5'_“sw
then the equation may be wrilten in the form £\
2 = £+ a + b e Y @

7 ‘\ ?
where the three variates ¢, b, ¢ now have zero meang: 8 W\e shall denote
thelr variances by o2, of, of, vespectively. Clcg{ly‘_ the mean of any
7 18 £, and Lthe varisnce of any z;; is \\

3

cri-:a'f‘-]—cr%—'l—:o‘jgt’ o (3)

since the three variates are assum,efl:'d;o' be independent. It is to be
observed that the xy themselves ‘L‘re' not independent if they fall in the
same row or eolumn, Thus, 0k example,

o\
El(z11 — &)(212 _éﬂ‘; El(ay + b+ cr)(as + o F ew] &)
& - (5)
which arises {ro m he a2 term on the right of (4). Similarly the covari-
ance between £ observations in the same column is 03
With the presont model, the null hypothesis that the row effects are
dentical pakes the form ¢% = 0. This is to say that the ’f’*’hlc_h
have mein zero, arc actually identically zero; their distribution 18
c(. Gntrated at o point (zero), which is the only way o} can be zer0.
Simifarly the null hypothesis that the eolumn effects are all the same
takes the form o = 0. i J
To test thesc two hypotheses, the sum of gquares is Part.ltioned just
23 before:

é(x‘f - B = E {y; — & — &g + @2 4 TSZ (F:. — z)*
’ 41y (B~ B 6)
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in which the degree of freedom for £ has been omitted.  Tf we subst-
tute for the z's on the right in terms of a, &, and ¢, the result ig

Z {wi — %) = E (g — & — 8+ O+ g E (o + & —a — &
b 1 T
Fry it —b—ar
H

where the ¢’s are defined in the same way as the s and & = Zayr,
b = Zb;/c. Tt is easily shown that the three sums on the right are
independently distributed by chi-square laws by using the Yesults of
Sec. 5. The results of the latter part of that scction mafbe applied
to the ¢y since these variables are independently normally distributed.
{Since the ey all have zero meany, the means o, ,8,3~\§(‘0f Sec. b are all
replaced by zero.) It follows from Sec. 13.5 afi>equations (5.20),
(5.21), (5.22) that Z(ey — &. — ¢; + €)® is distpibuted independently
of the devialions & — ¢ and ¢; — ¢; furthér) the set of deviations
¢;. — € is distributed independently of the'sel ¢; — ¢, as follows from
(5.20). Also the sum in question when”divided by of has the chi-
square distribution with (ry — 1)(r¢™>1) degrees of freedom.

Since, by assumption, the ¢’s axo Independent of the ¢’s and b's, 1t
follows that the first sum on ¢h@ right of (7) is distributed independ-
ently of the other two sumis.’ These other two sums are also dis-
tributed independently, since the variables a, and the variables & — ¢
are independent of the't} (by hypothesis) and the &; — & (hy equation
20 of Sec. 5). T r{he’rmore, these two sums are distributed by chi-
square laws. Fokonsidering the sum ={g; + ¢;, — a — £)* we may
let b

AY

O Yi = @G + Ci.
and we ;kﬁb\w that ¥ 18 a normally distributed variate with mean zero
a.ndzygié,nce o2 -+ (02/ry). Thus
A Z(y: — )?
Ot T+ oY)

has the chi-square distribution with » — 1 degrees of freedom; henee
it follows that the second sum on the right of (7), when divided bJ:
(rel + %), has the chisquare distribution with o — 1 degrees ol
frecdom. TIn the same vein, the third sum on the right of (7), whet
divided by (ri} + o2), has the chi-square distribution with 72 ~
degrees of freedom. All these results may be summarized in )Ehe
accompanying table. The final eolumn provides the divisors which
make the corresponding sums of squares chi-square variates.
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Sburce Sum of squarcs begrees of Lxpected mean
-freedom square

o I (E — B)? w1 .

E‘.ﬂzm:ms o --_:2{5.5 —z)* re— 1 7 -+ o )

Deviations Z (i '— 2, —2; 485 |- D 1) _ s o

;of.a,l Zlxe; — T2 _?'_1?'2 —1 i

T'o test the mull hypothesis 2 = 0, onc again uses the ratio of ‘the
row mean square to the deviation mean square and compares thattatio
with the eritical value of the F distribution for r; — 1 and{™}

(o — D — 1) NS

degrees of freedom, For under the null hypot-l}eeis;these two sums of
squarcs have lhe same divisor ¢f; bence t:h{t: Ainknown. parameter
cancels out in the ratio of the two chi squarediand the ratio of the mean
squares has the F distribution. The ,teéts' for the row and column
effects thus fake exactly the same forin s those of Sec. 5, but here no
assumption of additivity is requirgd™®

14.10. Components of Variance for Two-factor and Three-factor
Experiments. For a two-fader experiment with m observations per
cell, the ohservations ariQ‘sshmcd to be of the form

ahD= £ bt b et e ®

where the a’g, b’g{t;’ é?, and &g are normally distributed with zero means.
The o's are_s@idciated with row effects, the b's with column effects,
the ¢'s With%ﬁw—column interactions, and the o's with all other muis-
(fellaneogs;’;eﬁec ts which influence the observations. The va}"ianaes ?f
these §ariates will he denoted by o, of, o2, and o7; the oo 19 used. m
pﬁs‘ief‘enc-(: to o? to Indicate more clearly that it refers to the populat}on
of row-column interactions. We shall leave the details as an exercise,
since they are very similar to those of Sec. 9, and merely present the
resulis, The final column of the accompanying table shows at a
glance the appropriate ratios of mean squares for testing t]}e various
will hypotheses: for ¢f, = 0, one COMPATES the int'eractlon mein
Square with the deviation mean square (this is Somet'lmcs ca}led t tz
test of additivity); the main effocts are tested against nteraction (o
against deviagions as was the case in Sec. 6).
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C : Degrees of Fixpected 1
Source Sum of squares grecs P nean
freedom gquare
Rows mra %8, — )¢ mn =1 &E 4 izl + mred
Columng ey D{E ;. — I)2 re — 1 g+ al, + mre}
Internetions | mB{Eg. — £, — Z5 + E1* (11 — 1{ry — 11| &f -+ mol,
Deviations | Z{zgn — £5.0° ryra(m — 1) a; N
_ AN - -
Total 2lrig — £1° rirem — 1 € N\
7N

For the three-factor experiment, the cxpoected méf&n souiares for the
table of See. 7 arc: \

/N

Bouree F

3

W

xpecled ’ﬁks’:n sguar:
AN

X )
% 2 H I
A effect ot 4 wet, PNl o mrwl, + omraed
- = .', ..

N z Lo

B effect of + w4 mrwl, b mriel, - mer,
™ 2 2

C effect ohPmel,, + mrwl, + mros, + mrrw,

AB interaction e\ %S + mol,, + M sy,

2 1

El

+ - \ i W
A mtemctlon\ ay + mal, + mral,

BC interdetion ot met,, + wron,

7
{‘LBC» interaction or + moly,

D
2\ = H 2
o\ eviations o

e

.\: 3

\”;x?zhere ¢? is the variance of the population of A main effects, o%, is the
variance of the population of the two-factor (AB) interaction affects,
o, 18 that of the three-factor interaction effects, and so forth. The
expected mean squares for experiments with more than three factors
may be readily written down as follows: Every expected mean square
involves the deviation variance with cocfficient one and all other
variances which have subseripts containing all the letters correspond-
ing to the mean square in question.

are the products of the ranges of all indices on the x's cxcept

The coefficients of these variances

associgted with subscripts on the variances.
346
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A very troublesome difficulty is encountered in three-factor and
higher order components-of-variance models. In the present instance
one obviously tests the three-factor interaction against deviations, and
he tests the two-factor inferactions against the three-factor interaction,
but what Is to be done with the main effects? On putting ¢ = 0 to
{est the main effoci of A, there is still no pair of chi squares with com-
mon divisors. If it happens that one of the two-factor interactions is

"gero, there is no trouble. Thus, if {he hypothesis ¢% = 0 is not
rejected, then the main effect of A may be tested against the AGON
interaction. A

If neither of the two-factor interactions is zero, then a theo;ejiéaﬁy
satisfactory test for the main effect in question can hecome & trouble-
some matter. In practice, the following simple appmxixgﬁﬁbn device
is ordinarily employed: BSuppose it i8 desired to E?S’"‘%E = 0. Let
W, ¥z, ¥s be the sums of squares for AB interactiom, M C interaction,
ABC interaction: let m4, fus, 75 be their respective Jdegrees of freedom;
let ki, ks, ks be their respective expected snrsquares. Since yi/ ke
is 2 chi-square variate, the mean and varisnee of y; are nede, and 2nk7.
It is evident from the above table of ?}gp:ec’ted values that the variate

_ g b @

v S
s N na

has the right mean value fqﬁ‘én F test of o2 = 0, but v does not have the
distribution of a mean éqhéire. ITowever, if the n; are large, the shape
of the distribution df'w does not differ much from the shape of the
Elist-ribution of a hean square, and the approximate test tres'mtf's v as
if it did have gueh a distribution. The only question remaining 13
how many 1é:§‘l.’ées of freedom shall be associated with 9. Letting N
be this mithler of degrees of freedom, one determines N so that the
vmanﬁé:@f the approximating distribution is the same as the variance
Of’ﬂ%é“actuﬁl distribution. The true variance of v i3

az=2(ﬁi+§+ﬁ) _ (3)

1 Fha fiz

while the varisnce of a mean square with N degrees of freedom and with

&xpected value &y + kg — kg is

%’ By - Tz — ko)’ @

aa
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On equating (3} and (4}, N is found to be

(:Iﬂl + ?{:g —_ Rs)g

N = GTm) e + Gy (5)

In practice, of course, the L, arc unknown, but they can be estimated
by the y; i.e., & = y/n,. Thus the approximate test for o = 0 is
to treat
N\
mrargS(Tp, — I)2

Ko UL
(r1_1)(§’;~1+”—*+y—3) A\
1

Fiy My « N

as an F variate with 7, — 1 and N degrees of frpgdon‘i, where N is
determined by (5) with the k; replaced by ./ n;\\

14.11. Mixed Models. We are now able toJdnVestigate the mathe-
matical model ordinarily needed to analyzgdafa from factorial experi-
ments, In most experiments, the leveld 6f some factors are to be
regarded as fixed constants whereas thedevels of other factors must be
regarded as random variabies; henge.the required model must be a
combination of the two models alteady discussed. As an illustration
of such a model, we shall returﬁ"t-é' the experiment deseribed in Sec. 6.
The effects of the machines will be regarded as fixed constants, while
the effects of the workmen will be regarded us a sample of observations
from some populationgdfivorkmen.

Using the notationof See. 6, the observations are now regarded as
being of the formy ™

' ’\1:'\ g = E+ a0 + B + ey + e (1)
where nowz) = L2 oo v r;d=1,2, -« Jry;k=1,2 -,
The o:4ré observations from a normal population with zero mean and
Vatjif{flf:é o2; the B; are constants whose sum is zero (the average
mgehine effect, for example, is included in £); the ¢’s and ¢'s are random
}béervations from normal populations with zero means and variances
o2 and o2,

The sum of squares is partitioned as before into parts associated with
the various factors:

D — ) = 2wa — T) + mZ(xy, — % — B4+ 5P
+ mreE(E. — 1)+ mm2E, — 5P (2)
‘On substituting for the 2’s in the first sum, it becomes Z(ei — B3.)’s

hence on division by ¢} this sum has the chi-square distribution with
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rero{m — 1) degrees of freedom. The second sum beeomes
my leg+ &g — G+ &) — @+ )+ @+ 9P
i

and replacing the ¢ + &;. by yy, which has variance ofs + (o1/m), it
is evident that this term, when divided by me2s -+ o2, has a chi-square
distribution with (ry — 1)(rs — 1) degrees of freedom and is distrib-
uted independently of the first sum, since the deviations ey — ;.
are independent of the &;. Similarly the third sum is independent of ,
the first two and has the chi-square distribution with r1 — 1 degrecs
of freedom on division by o2 + mels + mrsoh. O\

The {inal sum on the right of (2} becomes S )\

mr, Z (€;+ &5 —&— &+ B;)? K,
7 N\
which i independently distributed of the other sumsj}u’rf does not have
the chi-square distribution. TFlowever the quagﬂt,ﬁ"

mri2(E; — & — G

does have the chi-square distribution (p};ﬂi\fision by a2 + mols); hence
under t,h() ikl hy}:)(jt.l-lesis,,I }S_{ = O,f‘ﬂié final sum on the I'igh.tu Of (2)
does have the chi-square distribution.

The analysis-of-variance t{b]e presented here may be compar.ed
with that of See. 10. The findl column shows at a glance what ratios
N

=

8 . ) Degrees of Expeeted mean
ouree Sum :Qf JBCUATES freadom square
— t\ oo . ————— -
Acliect | mngilp. — 22 1 st + mogg + T
i - L
oS . . mrrZ8;
B ef_‘fef-_t: ,\:. Ve B(E; — £) rg — 1 62 + megg e — 1
L _
—L N\ | I B
AB Thter-
aufion M Ey, — &, — &g A E |l — Dirs — 1 o} + Mo
_ . i e
Deviations | E(xi — £a))? rora(m — 1) o

arious null hypotheses.

of mean squares i ing the ¥
s are appropriate for testing the ;
oth ca gainst interaction, not

I.‘hej main effects in both cases are to be teted &
agarst deviations,
349



§14.12 EXPERIMENTAL DESIGNS AND TII¥ ANALYSIS OF VARIANCE

14.12, Analysis of Covariance. The analysis of covariance is a
technique employed in analyzing factorial cxperiments when the
subject of the experiment is related via a regression function to certain
observable parameters. As an example of an experimoent in which
the method would be used, let us suppose that peneteation of different
kinds of stecl plates by 50-caliber projectiles is being studied. Sup-
pose there are & plates, one of each kind, and that » projoctiles are
to be fired at each plate. The depth to which the jth projectilc pene-
trates the ¢th plate will be denoted by ;. Thus far we have ag)n&
factor experiment with % levels and m observations per cell¢\But the
velocity of the projectiles will be a eritieal factor in the dept}i of pene-
tration. We shall suppose that this factor iz not of j;;té’t‘est- for pur-
poses of the present experiment ; we merely wizh igafhsarve for a fixed
velocity whether the resistances of the plategd d‘ii’fe't’ significantly.
However it is impossible to fire each bulletsiifh exactly the same
velocity; and in performing the experimenty Whe veiocity of cach one
will be meagured photographically, and feh (he effects of the varia-
tions in velocity will be taken account? of in the analysis of the data.
Let the velocities be denoted by ;™ The observations xi; arc now
assumed to be normally distributed*with variance ¢2 gbout the linear
regression functions N\ :

™

) :;! + Bazy (1

~

In the experiment, 3us\L described, the observable paramcter z is
associated with anesftraneous factor (veloeity) which eannot be entirely
controlled and miust be dealt with in the analysis of the data. In
other experimdufd, the observable parameter may be sssoeiated with
a factor of ifitefest. Thus in the above experiment we may desire 0
study theltwo factors—type of plate and velocity—and might vary
the \fpleit}it-ies over u considerable range. But in this latter experiment
the.siple linear regression function might not be adequate, and we
shall’ restrict our illustration to the simpler siluation. In more
dlaborate experiments, there may be several observable parameters
corresponding to each of several factors for which it is impossible oF
inconvenient to assign specific levels, Ordinarily, when it is possible,
factors are studied in experiments by assigning to them a speciﬁ(? seb
of levels rather than an observable parameter, because the analysis of
the resulting data is simpler. .

Returning to the illustrative example, we have a two-factor exper
ment in a one-way classification. One factor (type of plate) 18
assigned specific levels which form the one-way clagsifieation, and the
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other factor {velovity)} is represented by an observable parameter z.
The data consist of mk pairs of observations (zg, z;) with 7 =1, 2,
<o+ kandjf =12, - -+ ,m  Wewish to test whether either of the
tactors alfect the subject (depth of penctration), and in particular
whether {he plates differ when effects due to differing velocities are
removed.

The sum of s¢iares of deviations from the regression function for the
observations in a single cell may be partilioned just as was done in
{2.5) to obtain Q.

Z(xi:f — a; — Pag)? = E (@ — & — P> + (Bs — #35)22 (2 —, 5{)"\
+miE. — o~ BEY )

where the sums on the right are independently distzibuted by chi-
square laws {(on division by o) with m — 2, one, ahd ne degrees of
freedom, respectively. If now (2) is summed oy /the total sum of
squares will be partitioned into three parts indépendently distributed
with k(m — 2), &, and k degrees of freedomg respectively. The result
is A\ :

~

Z (z5 — oy — Bizi))? = E (i — é@cf{ﬁ.e;ﬁ)z + E (éa - B3z — 2)°
i . i

i

m<“ + m‘E (& — a; — Bi)’ @
€ ) [
&
We shall first investigate the hypothesis that the slopes of the
regression Yiney areﬂlé same for all cells. To this end we write
N
:u\.;. ﬁi = 6 + Yi (4)
N\ : To test
an.d the nullhypothesis then may be put in the form s = 0. Totes
bhis hypotiiesis, the middle sum on the right of (3) is to be p_amtmned
mto\t““o'parts: one with & — 1 degrees of frecdom involving the ¥

and the other with one degree of freedom involving 8.

If we let
Wy = Z (Zig‘ - 2:)2 (5)
K
then it is apparont, from the middle term on the ight of (2) that 5 i
norn}‘aﬁy distributed with mean 8 and variance a/wi. T urthermolz'ﬁx
equal,

the B are independently distributed. If their variances Were
361 )



§14.12 RXPERIMENTAL DESIGNS AND THE AXALYSLS OF VARIANCE

one could partition Z(8 — 8, directly into (3 — v; — §)? and
k@ — 8)* with £ — 1 and onc degrees of freedom, but this is not the
proper procedure here (see Prob. 23 at the end of Chap. 12). The
deviations of the § must be taken not from their simple average but
from their weighted average, say

A Eu:iﬁg
ﬁ = —"_.T (G}
Z.'u,,- ~
Furthermore, 8 in equation (4) must be similarly defined §osthat the
v: represent. deviations of the §; from N\ *
2w WY "
P = Sw, R )

Now the middle term on the right of (3) iy he partitioned thus:
A
Yol — B3t = Ywl( —3F B + (3 - A1

=Y -+ @G- Y

N

since the sum of cross—prodiict*: terms vanishes in view of (6) and (7).
It follows from the re?.,u{.f- of Prob. 81 of Chap. 10 that the two terms
on the right of (8) a@e. independently distributed by chi-square laws
with & — 1 and one\iegrees of freedom, respectively. Under the null
hypothesis, v; 20, the first sum on the right of (8) with the first sum
on the right 0?;’}(3) determines an F variate with & — 1 and k(m — 2}
degrees of-ftdedom. The other degree of freedom on the right of (8)
pruvids%a'n' orthogonal test of the null hypothesis, 3 = 0. .

Tu'r.fling to the third sum on the right of (3), we should like to parti-
”Ei.O'Iif 1 s0 as to get an appropriate test of the hypothesis that the &
\a‘ké all equal. Unfortunately this is not possible unless the 8 are all
zero. However, it is possible to partition the sum to get some useful
information about ithe a;, particularly when the §; are equal. One sets
up the null iypothesis,

B@) = « + 8% ©

which states that the cell means (Z:, 2.) fall, within (zxper_imeﬂt'al

error, on & straight line; the nature of this hypothesis will be dl:d('rllsse

further helow, but now we proceed with the partition. The third sum
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ANALYSIS OF COVARIANCE §14.12
on the right of (3) may be written
mZ[(E.:, —a— fE)— (e —a) — (& — BIL]

‘ =m) @ — & —a—§2%) (10)

where

§ = {(ay — o) + (B — 877

Regarding the #;. — & as a new random variable, say u; the sum of

squarcs on the right of (10) may be formally partitioned just as was

done in equation (2.5} to get O\
7NN ¢

mz (ﬁt — 5,: — o - ,8’55,)2 = mz (f‘;‘ —ag - ﬁa-— 5’5"2\5,)2 \;' W
“ + m{f — JB’)QE (. — 2+ mk(T—§ — am—o\—iﬂt'é)g' (11)

in which, referring to cquations (13.2.8) and (13.2.9% we have
- . N
& =% — 35— Bz L& (12)
ﬁﬁ’ 2(:3,-_ — & "j E +—B}(§;i— 2) (13)
Z(Z. - Z)“
and subgeripts & have been put un.;thésé two estimators to indicate
that they are functions of the unkhown parameters &, Under the
null hypothesis that the E(Z; )/4re linear functions of the 2. (.., that
the 8; = 0), these two estimébors become
™
207 - 6l 14
Wy @ -DE. -2 15)
PO L L
&
the ordinary. 'ie;gréggion coefficients fitted to the points (Z:, Z); they
are therefoﬁé called the regression coefficients for the cell means.

The three terms on the right of (11) areind ependently distributed by
| Chi'méﬁi laws on division by o7, the first with & — 2 degrecs of free-
dom ahd the other two with one degree of freedom each. The null
hypothesis, &, = 0, would be tested by putting & = 0 in the first term
on the right of (11) and comparing it with the first term on the right
of (3) in an F test. The nature of this null hypothesis is illustrated
on the left of Fig. 67, where the solid lines represent within-cell regres-
SIons with equations z = & 4 8z, and the dashed line represe_nts.i:he
fogression of cell means @ = Qo -+ 2. The points on the solid Lines
4re (%, %), and the null hypothesis states that the expected values
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§14.12 RXPERIMENTAL DESIGNS AND TIIE ANALYSIS OF VARIANCE

of the vertical deviations of these points from the dushed line are
zero. Rejection of the null hypothesis is good evidence that the cell
parameters differ. However, as the right-hand graph shows, the cell
means can be lincar, and even though the within-cell slopes are the
same, the o; are different. That i, one can accepl # = § and §; = 0,
yet it does not follow that the a; are equal. However if 8 = 8, then
it would follow that the a; were all cqual,

X

z z
FIG; 67*

Assuming now that 3 = 0 afid 8 = 8 are acceptable hypotheses,
let us construct a test for the*null hypothesis 8/ = 8. The random
variables § of cquation (8Xand A, of equation (11) (pulting &; = ) are
independently normally"distributed with means § and 3°, and variances
0%/ Zw; and ¢?/mZ (P~ 2)%. Their difference is therefore distributed
normally with méan g — g and variance equal to the sum of the
individual vanigices. Hence

[8 — Boslls — p):

[ ]

b mE(Z — 2

SN A M2 ‘
P I _ﬁL(_ ® —_)33 )] mywy (& =2 (10
o 25— 2)

T 2
SN {
S

haz the chi-square distribution with one degrec of freedom. The
weighted sum of 8 and 3,
Zwf + m=(E. — 28 (i

is normally distributed independently of § — B) [it i pecessary OI}IY
to show that the covariance between (17) and § — f) is zero] with
964



ANALYSIS OF COVARIANCE §14.12

mean Swl + mE(z;. — £)?8’ and variance ¢*Z(zy; — 2)%. Thus

Swi(8 — g — BN SE. — B
[Zwi(B — 8) j;;zf_z;?g) &G —-27T (18)

has the chi-square distribution with one degree of freedom and is
independent of (16). If the hypothesis 3 = §’ is accepted, then (18)
provides a test of whether their common value is zero. The two
independent degrees of freedom corresponding to B and B in (8) and
(11) have been transformed fo two other independent degrees of N
freedom (16) and (18). . A

The complete partition of the sum of squares is exhibited i the
accompanying table, in which all parameters have been puk equal o
gero. We shall review briefly the various tests: R N

AP

NS
Degrges of

Qs
Source Sum of squares Phedom

<Y,

Devintions E (7 — G — Bezep)? \ ~’:\ k(m — 2)
a7 O

B — 8 2 {2i; — Ea)g(&“:;_é)z k-1
i N
5-5 (i‘i‘."_“ ’): - Jéy‘\'-)2 k - 2
i3 %..,’\ [=1)] n®
",}5_ 3;)2210;2 (2, — B
b O T T |
ﬁx'\\\ %{ (25 — 21
."\". -
O [63 i +mb Y @ — o]
R .:':" — _L__,_.._{..—-—-—-—‘" 1
o~ D = E {ziy — 2°
AV I A S—
Total Y iy — 2)° ke — 1
G I

the individual cells all
quare (sam of squares
first mean square has
g of freedom. 1f
+ once that both

L. 8~ 8 =0, If the regression lines for
have the same slope, then the second mean s
divided by degrees of frecdom) divided by the
t'hfﬁ F distribution with & — 1 and k(m — 2) degree
this hypothesis i5 rejected, then it i concluded a
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factors affect the subject of the experiment, for if the regression
coeflicients differ, at least one of them must be dillerent from zero.
2.8 = 0. The third mean square divided by the first mean square
has the I distribution, whether or not the §; are equal, when the cell
means are linear,

3. 8~ 8 = 0. The fourth mean squarc divided by the first bas
the # distribution if 8 = &', only if i is true that 3; = 3 and & = O
Omne would not make this test if either of the first twe null hypotheses
were rejected. I all three of these null hypotheses are accepted, ghen
it is inferred that the factor corresponding to the discrete classifica-
tion does not allect the subject of the experiment (the oy ésAyell as
the 8; arc the same for all cclls). QO

4, 8 = p = 0. This test would be made only if &¥\(hree of the
other nuil hypotheses were accepted.  If this fourth iiull hypothesis is
accepted also, then one infers that neither of thgYwo factors affects
the gubject of the experiment. \

In many experiments there would be no ﬂih\u‘ght of muking all these
tests; the primary cbject of the experimm}t’might be to estimate the
regression coefficients, it being well knofwn'm advance that both factors
influence the subject. In-such caggsione would ordinarily make only
the first test, in order to decide sthether the same slope would suffice
for all cells or whether a sepa.fafﬁe’ slope should be computed for each
cell.

14.13. Analysis of Adjusted Means. Therc is one other aspect of
the analysis of covariahc€ that needs to be discussed. We may refer
to the illustration ahythe beginning of the previous section. Suppose
it is found thatJ§th factors affect the penetration; the a; and B are
different for ‘g-l«\fe..diﬂerent plates, but this was to be expected anyway,
and theserélis are of minor interest. The real question may be, Do
the pla,tEQd'iffer in their resistance for velocities z = z,? (Thus %
may B8 the ordinary short-range velocity of 50-caliber bultets.)
Adr\h.j}t'ed that some plates may be particularly good for very high
velacitics while others may be better for low velocitics, how do they
rank at the velocity of real interest? ]

Using the notation of Sec. 12, the cell means &;, correspond to velocl
ties Z;; in fact

Z. = &+ pa. )
With these regression cocfficients we cstimate that the cell means
would have been
yi = & + fizy = B — Bilz. — #0) @)
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AXALYSIS OF ADJUSTED MEANS : §14.13

if all the Z. had been equal to 20. The y; are called adjusted cell means,

and we are interested in testing the null hypothesis that the expected

values of the adjusted means are the same for all cclls, The y; are

independently normally distributed, as follows from equation (12.2),
with variances

o; =a* [% + wia (2. — za)z] : (3)

N

and with means which may be denoted by ». Since the variances of

the 4 are different, we test the null hypothesis # = v by using.the

weighted sum of squares of deviations from their weighted m({é:h, say,

ety ON _
J.f) = _E(}.XO'Q‘) ’ "",'\\‘ (4:}

Just as was done in the preceding section in tes.tiQ'g;the B:.  The sum of
squares is (Y -

VL e Ly ol —9) 5
A( O’% (Ih 3')’) 0_2 z,‘lﬂ: _F m(za — zu)g ( )
which has the chi-square distrilguff;if;h with & — 1 degrees of freedom
when the n; are equal and whish'is distributed independently of the
first sum on the right of (12:2)t Thus we have an F teal for o = m

If the first null hypofhexis, 8 = f, of the preceding section s

accepted, the Z; are, a Justed by the single regression eoefficient $,

and the adjusted mehns are
¢ '

xt\:n" i = Ei — ,é(éz - Zg) (6)
O\
The varia‘nieshf the 7, then become
A \ o 11 ] M
\"\\} - o= [a - ple B — 2]

and equations (4) and (5) are altered accordingly. In this case the
8um of squares for the denominator of the ¥ test is often faken t(? be
the sum of (he firsh two sums jn the table of the preceding gection.
Thus the deviation sum of squares would be

; (@i — & — Ba)® + E wilfi — B = E (z — & ~ fea) &

i

With b — 1 — 1 degrees of freedom.
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In testing adjusted mecans, one would ordinarily choose ¢ = 3
unless there was good reason for not doing so.

14.14. Notes and References. The general field of experimental
design was first thoroughly explored by Fisher, whose book [1] remaing
today the most important treatment of the subject. It was originally
published in 1935. Yates [2] has introduced muany valuable new
designs. The tables of Fisher and Yates [3] deseribe most of the known
designs and give instruetions for using them. ~

The analysis-of-variance technique is also due to Figher. \Fisher
used the test criterion ¢ log F rather than ¥ in his dewelppment.
The latter version of the criterion is due to Snedecor, *;vhj(} named it F
after Fisher, An cxcellent presentation of the praetidal aspects of
experimental design and analysis of variance mayx/Be*found in Snede-
cor’s baok [4], a large part of which ig devoteddn these subjecs.

We have given in this chapter mercly the Radest introduction to the
subject. Only the simplest designs have Reen considered, and they
have not been fully analyzed. The to‘t.aJl sum of squarcs may be
further partitioned to study individudheffects of factors and to study
the linear, quadratic, cubie (and seforth) components of factors whose
levels are chosen values of a congintious variate.  Also the analysis was
much simplified by assumingiequal numbers of observations in the
cells. When the eell fr(,queliéies are nob equal, the analysis becomes
much more tedious (gxgept in the case of one-way clussifications),
primarily because tk&\’sests become nonorthogonal so that simple suc-
cessive partition ohthe total sum of squares is no longer possible. The
analysis of covana‘n(‘o can become quite difficult for more elaborate
designs and pdore complicated regression funetions; we have dealt only
with the sm;%est casge,

Mos‘&@xperlmental work toduy is based on the rule: “Keep all
Varla:bles constant but one,” an anciont and erroneous dietum which
glxal*antoes a high degree of inefficicney. Omne well-designed exper-
ment, taking account of all relevant factors, is worth dozens or even
hundreds of experiments which study onc factor at a time keeping the
others constant.

1. R. A. Fisher: “Design of Experiments,” 4th ed., Oliver & Boyd,
Ltd., Edinburgh and London, 1945.

2. F, Yates “Degign and Analysis of Factorial Experiments,”
Imperial Bureau of Soil Science, Harpenden, 1937.

3. R. A. Fisher and F. Yates: “Statistical Tables,” 3d ed., Hafper

Publishing Co., Inc., New York, 1948,
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4 (. W. 8nedecor: ““Statistical Methods,” 4th ed., Jowa State College
Press, Ames, 1047,

14.15. Problems

1, Test for differences between machines using the date of Sec. 3.
The computaiions are usually easier to do if the sums of squares are
put in forms which do not employ deviations from means. Thus,
when the n; are equal, say n; ='m,

o o _ .
Zm(&:;, -z == Z Xz~ X*  and A
3 =20t = Vb o) X
wherc X = E i and X;, = E Zij. o ,\ ’
g ; N\

2, Use the data of Sce. 5 to test whether mashine effects differ.
Note that x\\

oS @ —pr -5 x - L ,,Z(,q-,jg'_s\,,;;z:;zxgﬁﬁp

and that the deviation sum of squanee::zhay be obtained by subiracting
these two sums from Zzi — (1/ ?‘(:)X %

3. Referring to Prob. 2, find,a 95 per cent confidence interval for
the difference hetween the gfiects of the first and third machines.

4, Four varietiez of § aj:s were compared on a block of land by
dividing the block inta’¥6 plots and using a 4 X 4 Latin square {chosen
at random) in ordefdo take account of possible fertility gradients in
the soil. The 1’@5(11,‘5‘iﬂg yields in pounds were found fo be as follows,
where the integets 1, 2, 3, 4 refer to varieties. Test for differences
between vgﬁrénfeffects, Was it worth while to use the Latin square?

&«
S

o N

/AN

\\; 47 | 40 50 | 7




§14.15

EXPERIMENTAL DHSIGNS AND THE ANALYSIS OF VATIANCE

5. Analyze the following data taken from a much larger table:

REeTarn Pricns

or BREAD

MNew York

Chivcago

Fos Angeles

Chain stores and super-
markets. ... ...,
Supermarkets (not

14, 15.5, 15, 13

14, 18, 11.5, 13

15, 15, 14, 13.5

ehain). . ... .. .. | 14.5,18,12.5,13 | 13,13,12,13 | 13,15, 14,13.5
Nelghborhood stores. 'l 18, 15, 15, 17 15,13, 16, 15 16, 20,45, 18
Ny,
6. Analyze the following data: NS ©

L W

AvERAGE NimeER or CHILDREN PER F,-\_\gr‘r,%,

Cilies '.L‘oa{ﬁu:?', Rural Arcas
Family income N\ =
White | Negro '\{Q‘l'ite Negro | While  Negro
_L \?.:.:_. S : -
Under 84,000, ... ... ... .. 2.1 2\ 2.2 | 2.7 3.0 1 8.2
Over $4,000, . ... ...... ... 1.5 %Y 1.8 | 2.1 2.5 | 29
- |

7. A paint-manufacturing company tests new formulas for outside
paint by painting 12 panels of each of three kinds of wood (36 panels
in all} and exposing them- for 2 years in four climates (warm dry, cold
dry, warm humid, colg huimid), putting three panels for cach type of
wood in each climaté, A group of paint technologisis then score the
panels on a sealefrom 0 to 100.  Analyzc the following data for four

formulas:

Type ﬁf.'\'h Climate - . Formula —_—
wool \, ) 1 ; 2 3 . _,_’.1_—~
~N 1 21,15, 17 | 56, 59, 53 | 41,38, 42 | 51,47, 43

N 2 20, 18,19 | 61, 62,62 | 486, 47,45 | 53,51, 54
W1 3 26,30, 31 | 72, 67,70 | 530,48, 54 | 64,63, 66
4 81,31,32 | 66, 64 67 | 54,52 55 | 64, 65 64
1 24,20,23 | 54,54 56 | 39,38 39 | 5O, 44, 50
2 21,25 25 | 58, 64, 61 | 45, 44 45 | 54, 53, 52
2 3 30,81, 81 | 71,71,71 | 49,48, 53 | 59, 61,60
4 33, 34,30 | 74, 71,72 | 48, 56,53 | 59,62, 62
! 14,17, 18 36, 55, 52 42, 40,40 | 48,49, 4
3 2 21, 22,22 | 61, 60, 58 | 46,48 50 | 53, 54, 55
3 80,30, 32 | 69, 71,70 | 50,47, 48 | b9, 62,63
4 36,33,85 : 68, 73,77 | 55, 54,51 | 62, 66,64
| N
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8. A nutrition experiment studied the elfects of five diets for
fattening pigs for the market. Fifteen pigs, threc for each dict, were
put on the dicls for 1 month. The following table gives the final and
initial weights in pounds.  Analyze the results.

Diect

1 2 3 : 4 &

118,72 © 102,70 | 91,63 | 104,65 | 93,68

108 64 | 83,55 | 97,6¢ | 110,60 | 79,65 .

09, 65 | 99,61 | 92,62 | 95,57 | 06,00 ¢\
7'\ N

9, A first-grade toacher with 20 pupils decided to testeor herself
the merits of tsvo methods of teaching reading. The clajssivas'divided
into two groups of ten and the pupils given an inte}h:génce test (I).
At the end of the year they were given a comprehudsive achievement
test (A) in reading. Compare the two nlethodg\ 7

¢
S
T 112 |1z [os ] & gpNa07 | 96 | 101 | 106 | 104
Method 1 .- — S
A | 81 o8|l 6685 | 704 63| 70| 71| 7
T i g5 | 08| SL{M08 | 114|110 | 107 | 99 | 126 | 106
Method 2 ' o | . - —
Al so| sofo] 72| T | W] 65| W 68

10. Manufacturers of\r\uass-production items often use statistical
methods to control yariations in the quality of their product. Qne
technique is to take” periodic samples of items from the production
line and measmé:.\s'bme critical dimension or other propert-yl(ha.rdness,
%)reaking st-%gfh, slectrical resistance, etc.). Thus one might exam-
ine samplagef size five every half hour over two 8-hour shifts, obtaming
32 sample oin ol Tow would you use these data ko test homogensity
of €h8 Production process over time, and what assump’ﬂiOIllS do you
tequire? The null hypothesis is that no factors have crept in to al.ter
the process—factors such as varistions in incoming raw material;
slipping of machine adjustments; failurc of governors, thermostalic
controls, ete.; differences in techniques of assembly-line WOrkerS_; weent
and tear on the equipment; and the like. If ihe null hypothesis 15
acceptable the process is said to be én control.

11, Samples I;f three fuses were taken every hour for 2 days from a
Process making 10-ampere fuses. The fuses were blown ?’nd ihe C;I?r—
tent messyred with the following results. Is the process 11 confrol!

361



£14.16 EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

1 10.2, 10.1, 10.3 9 | 10.0, 9.8 6.8
2 9.7, 9.9,10.4 | 10 9.8, 9.7,10.0
3 | 10.6,10.1, 9.9 | 11 | 10.1,10.1, i0.1
4 | 10.1, 9.8,10.3 | 12 | 10.3,10.2, 10.3
5 9.8,10.0,10.2 | 13 | 10.6,10.% 0.0
6 | 10.2,10.1,10.0 | i4 | 10.0,10.1, 10.2
7 9.5,10.1, 9.7 | 15 | 10.1,10.4, 10.1
8 8.9, 9.9, 9.7 | 16 | 10.5,10.2, 16.4

12. Referring to Prob. 11, let £ be the meun of all obsewat-ions.and
let s be the estimate of the standard deviation based on the ¥ithin-
sample deviations. Suppose now that another sample iz drén with
measurements ¥, ¥, ¥s. How would you test (assumid@) hormality
and commoen variances) the null hypothesis that K= FE)?

13. In quality-control work, after a collection of Bﬁmples hag been
analyzed, a control chart is constructed. The c-h?is.% iz simply a set
of three horizontal lines drawn on graph paper¥at Z, I -+ 3s/4/m,
Z — 3s/+/m on the vertical scale. Here gidsthe within-sample esti-
mate of the standard deviation, and m is,the'sample size. The central
line is called the process average, and™be other two lines are called
condrol limils. One continues to sataple the process periodically and
plots the successive sample mean.sj{gls"points on the chart (ihe abscissa
of the sth sample mean is 7). «When a point falls outside the control
limits, the production progess'is halted and carefully examined for
presence of disturbing fga,cf\brs. About how many times per thousand
samples will the proo{g‘sf)e futilely examined if the process remains
in control? \

14, Tn the aboye~problem, the plotting of each point constitutes a
simplified test %in'\the null hypothesis described in Prob. 12. Criticize
this test. Alnder what cireumstances would you regard the lack of
indepen‘d?\licé bhetween successive tests as not serious?

16. Ferify equation (5.7) of the text.

16 Show that the expressions (5.21), (5.22), and (5.23) reduce o
%Qrﬁié of (5.7).

17. Work through the details of the derivalion of the analysis-of-
variance table of See. 7.

18, Verify equation (8.2).

19, Referring to the components-of-variance model of Sec. 9, SUP-
pose one wished merely to estimate the variance components a2, oh ‘fz
and had no intention of testing hypotheses about them. Would it
be necessary to assume normality? Would the obvious estimates
determined from the analysis-of-variance table (by equating mean
squares to expected values) necessarily be good estimates?
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20, What are the maximum-likelihood estimators of o2, o}, o2 of
Sec. 97

21, Show that the four sums of squares in the first analysis-of-vari-
ance table of Sec. 10 are independently distributed by chi-square
laws.

22, Derive the expected mean squares in the first analysis-of-
variance table of See. 10,

28, Verily equations (10.3) and {L0.4).

24, Derive ihe expected mean squares for the table of Sec. 11.

95. Show thal (12.18) has the chi-square distribution and is inde-'
pendent of (12.16). <\)

26. Verify equation (13.8). QO

27. Verify ihe iotal in the analysis-of-covariance table of Sec 12.

28. In a two-fuctor experiment with each factor ab two' Ievels it was
possible to obtain only one obscrvation for three of thie;\ceﬂs and two
for the fourth, Test for significance of the interaction.

NS

B By ‘\ v

A, | 68 obs
A | 50 ,551,49

29. Bhow that the analysis—of:é{wariancc table would have been as
follows had the ecll fl‘cquenﬁigs been different, say mi:
)

. A \ Degrees of
Bource  |{ D Surn of squares frocdom
b\ ¢, _
Dmﬁfu\i;ﬂ’.\‘; E (2i; — & — Bizss)® Zm; — 2k
e\ i L
2 S
W8 E (e — )% — B k-1
O P o _
"\ _ - —_— —
/ & | 'm-“'(fg, — é\u — Ié E;‘_)g —_
N\ | E : e
(8 — Byyr Y iy, maCes = 2
.r i 1
5 -3 - - -
__ L Sizip —#) ] R
8 = J_}.r (ézwa '{_ fjuzm‘(zi :?‘_), 1
ey — 2 N
R et —
Total (7 — )2 =mi
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30. Ixpress all the o's and 8's of the preceding table in terms of the
i &Ild ife

31. Test whether the regression function iz of the form o 4 gz 4 22
given the following obscrvations (z, 2) on a random variate z and an
observahle parameter 2; (2.1, 0), (6, — 1), (6, 4}, (1.9,03, (0, 2), (6.1, 4},
{0.1, 1), Do not work through the arithmetic; mevely speecily all the
steps in detail.

32. Using the data of Prob. 31, test whether the regression function
is of the form 2 — 3z 4 2% N\

33. Discuss the problem of testmp; whether the meaps of two
gamples from normal populations with the same vmrlmu,g, Wra equal.
Use the analysis of variance for one factor at two 1('\'(%, and com-
pare the resulting test with the one given in Sec. 124, N

34. Congider a one-way clussifieation with ob%e’l\\mnona Tiy

(=1, 2, -,k and j—_|2 C R

there being unequal subelass numbers # A Show that the analysis
of-variance table for the eomponents of \Erlance model is:

. ® A
Sum of o ]’ chrces af Bupeated
Source s
SquAres ! freedom L SOLLANE
Effects Yoklw B | k-1 &+ nol

Dcvmtmn:ﬁ,, N (e; — &30 N —F gl
¢ 7 ;

£7% . _—
NN -

Tofgl™ Y oy~ B2 N—1
\::\':‘~ i
N

Wh@@’N = Zn; o} is the error variance, ¢2 is the effect variance, and

'"\ w4 . 1 2?12
\: nn—},\)_l(N *\“)

Observe also that ny reduces to m if all a; = m.
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CHAPTER 15

SEQUENTIAL TESTS OF HYPOTHESES

16.1. Sequential Analysis. Sequential analysis refers to techniques’\
for testing hypotheses or estimafing parameters when the sample gizg
is not fixed in advance but is determined during the course, \e‘)i\t}’le
experiment by criteria which depend on the observations as they.becur.

In Yec. 12.2 we considered the test of a null hypothesie“against a
sngle alternative. [t was shown that for samples of: size n, (x1, oo,

« -, ), the test which minimizes the Type T7 craur Yor fixed Type 1

QN
: - , N
error is the likelihood-patfotest. Thus if the Type I error 18 chosen
to be a, then det-crmi\nes s number A by virtue of the equation

[[ - OF tiwsstes - - - foaonder -« - dmm=e D
&

where \§w ﬂ

S II f}.(xi) (2)

. w\: “\; hﬂ =

and the eritical region for rejection of Ho is the region

(3}

I error) of

> 4

This critical region minimizes the probability 8 (Type 1
accepting I, when H, is true
' . ) do
Suppose it is desired to fix both « and § in advance. gﬁerﬁﬁz A,
80 as follows if the sample size were at his disposal: first dete
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§16.2 SEQUENTIAL TESTS OF HYPOTHESES

as a function of n by means of (1), then determine 8 a3 a function of n,

B [ [ [R@ones A de

A A

and finally select # so that 8, has the desired value.

Suppose further that for, say « = .01 and 8 = .01, and for particu-
lar functions f5(z) and fi(z), we had worked Lhmu;_h the computation
and found # to be 100. The following considerations make sequential
analysis interesting both from the theoreticul and pracsical viewpeoing:
In drawing the 100 observations to test Ho, it iz possible thetk. Among
the first few observations therc may be one or more so fal, 10 the left
that eventual rejection of Ho is out of the question andNig'would be a
waste of time to make the remaining observations. h’: other ingtances
the first 20 or first 30 or first 40 ohserv auon«,”‘rﬁm provide quite
sufficient evidence, relative to « and 8, for acabyiing ov vejecting I
In short, the possibility is raised that, by mﬁm’rmmm the test in &
fashion which permits termination of the nz\mplmrr at any chservation,
one can test Hq with fixed errors o and ;S‘and vet do so with fewer than
100 observations on the average. Thl& 18 in faet the case, though it
may at first appear surprising in ku of the fact thut the best test for
fixed sample size docs require 1{}0 Observations. The saving in obser-
vations i often quite largey sometimes more than 50 per cent. That
is, in repeated tests of H.g\&”&ln&t H, for fixed control of hoth errors,
100 observations per e.@ “may be required for fixed sample sizes, bub
for sequential sa,mph1§ #nd the same control of the orrors, only 50
observations per test’may be required on the ave TREE.

16.2. Construcﬁon of Sequential Tests. The theory of scquential
{esting has bedn devdoped only for the case of testirig u null hypothe
sis Hy ag&%st a single alternative H,. It will become apparent in the
later S(,(ilons of the chapter that this restriction is not serious in
ap'Ehmtlon of the methods to practical problems. We shall et H a

ep to a density function fo(z) and H, to fi(x). Obscrvations will
be denoted by #y, s, - - -, where the subscripls give the orderin
which the cbservations are taken.,

The scquential test employs the likelihood ratio

_ H Jzs) (1)

f a(:)
and two positive numbers 4 and B, with 4 > 1 and B < 1. A8
observations arc made, one computes the ratios Ay, e, Xs, © ¢ 80
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CONSTRUCTION OF SEQUENTIAL TESTS §15.2

continues taking observations ag long as
B<h, <4 {2)

If, for some 2, My is less than or equal to B, H, is accepted and the test
iz completed. If X, becomes greater than or equal to A at some
stage, Ho is rejeeted and the test is completed. The procedure then
is to continue saimpling until A, falls outside the interval specified by
(2), at which time the sampling ceases,

The first question that naturally arises is, What is to prevent the
sampling from going on forever? It is easy to show that this canfiob,
happen—that the probability is one that the process will terdiinate
whatover the distribution of . T.ei &N

a
S

2 = log B_:_@] : \\ "

then ¢ will have some density funection, say g(@} determined by the
density functicn of # [which need not be fo{@)-or filz)l. The sequence
of observations 2, a4, + » - determines a(Befuence of z observations
21,22, + v+ . The scquence of inequgilj}tips"@) becomes

ol

log B < E'zt <log A 4)
N L

where log B is negative ands“ﬁ% A is positive. Let ¢ = log 4 —log B
and let p be the area 1mﬁ€rng(z) between —c and ¢. Now if any one
of the 2 falls cutside thodvinterval —e to ¢, one of the inequalities in (4)
will necessarily he ,Vi})l;’i}[-ed either af that stage or, if not then, af some

- ! [4 Z

Previous stage, Hence if (4) is to hold for all 7, &t the very least
every z; must {ull between —¢ and ¢. (Of course the inequalities may
he violated though all the #’s do fall in that interval.) The pwb‘a’bl.ht}r
that every g, falls in the interval js pm for the frst m observations
(since they are independent), and this probability g,pproache’s iem-
38 m increascs, singe p is less than one. Thus (4) cannot remau(l1 fzi'l;Le
mdefinitely, [In case g(z) is zero outside —¢ 1o ¢, ONe would define
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§15.2 SHQUENTIAL TESTS OF HYPOTTESES

new variables ¥;, letting y be the sum of the first », 2’s, ¥ the sum of
the next r, 2s, and so forth, taking r to be large enough that the non-
zero range of the density function of y does not fall within —e¢ 4o e

We turn now to the determination of A and B. The probability
a that Hq will be rejected when it is true is found by computing the
probability that A, will exceed A beforc it becomes less than B. Tt i
clear that

=PO\12A)+P(B<)\1<4’1,)\22‘:‘1) N\
+P(B<>\1<A,B<)\2<—4;)\321‘1)+'.‘\‘ (5}
{ N

Similarly the probability 8 that IT, will be accepted whei:i\H l’is true is

2%
 { %

B=PM<B)+PB<M<A N <B)
FPB<M<A B << A, ,\\,<P)+ (6)

For two specified density functions fo(x) and 1(x) one could compute
all these probabilities, using fy(z) in (5)\and Filxy in (6). It follows
then that « and 8 are known functionsdf)4 and B; hence if « and § are
gpecified in advance, /A and B arc determmed hy (D) and (6).

As might be anticipated, the actual determination of 4 and B from
() and (6) can be a major Lomputatlona] project. In practice, they
are never dctermined that Way becausc a very simple and accurate
approximation is avallamb{e The approximate formulas are

3

S axlcs Q)

IR

T R

A\

o
o &/

B 8
1 —
and th,e'&rise from the following considerations. Suppose A, were 2
c(}u‘r{ihﬁous function of a eontinuous variate m so that M. could be
pl\otted as a curve against m, and suppose the test were performed by
oving out along the m axis until A, first equaled 4 or B. That is,
the test is continued as long as (2) is true and ceases when either
A = B (Hy accepted) or A, = A (H, accepted). At all points of t.h’e
(x4, &3, * - -) space where H is aceepted, the likelihood of I7y, say L1, 13
exactly B times the likelihood Ly of H,, since N = Ly/Ly = B at those
points. Hence the integral of L, over those points is exactly equal t¢
B times the integral of Ly over those points. But the first integral is 5,
and the second is 1 — « (the probability of aceepting H, when ib is
true). So we would have 8 exactly equal to B(1 — «) if continuous
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POWER FUNCTIONS $15.3

sampling were possible, and (8) would hold exactly. By a similar
argument at A, = A, (7) would be an exact cquality if m were a con-
tinnous variate. Since the error of using (7) and (8) is merely g
consequence of the discreteness of m, one would expect it to be small,
and analytical investigation shows that it is quite small when both
@ and § arc less than one-half. We shall not, however, look into this
matter.

Equations (7) and (8} make the actual performance of a sequential
test astonishingly simple. It is not necessary to develop any sampling™\
distribution theory at all; ene merely selects « and 3 arbitrarily, com®
putes 4 and A, and procceds al once with the test. R\,

15.3. Power Functions. Lot a density function f{z; 6) .h‘aa}e one
parameter # and let us test the null hypothesis, § = Bu,gs;g'q,inst the
alternative hypothesis, 8 = 6. We are interested in’Ahe behavior
of the test for all possible values of . Tn particulary T’k ghall examine
the power function of the test, P(#), which is the probability that

will be rejected when 4 is the true parameter, yvalie. Of course
N
P6) =a (N oy
P(6) = LB (2)

£
=

and {(supposing for deﬁnitenesg*i’-}i&t 8y < 6y) we should expect the
power funetion to have somewhat the shape of the curve of Fig. 69.
P\

P{6)

Gy
Fia. 69.
, add the prob-

The straightforward way to compute F(6) is simply t{Th
us

abilities that 7 o will be rejected at each obsetrvation.

PO) = POu > ) 4 P(B < 0 < Ay 2e > A)
S PB e n < h B < At @
. 369



§16.3 SEQUENTIAL TESTS OF HYPOIHESTS

where, for example,

PB<h <A, \m>A) = ffj‘(:z:;, Of(es, O)dzy dzy  (4)
B

and the double integral is taken over the region E in the x4, 24 plane
defined by the inequalities

[l 81 Fler, 00 (s, 00)
B <f($1, fo) <4 F(@, 00)f (o, Bn} >4 ’\(5)

This procedure for determining the power function is tedioyg o say
the least and is usually so troublesome as to be completely©wiof the
guestion in practice, O

To avoid the usc of (3), a very ingenious deviee hozPeen developed.
We shall present it without a formal proof of its s:(é‘rec.tncss, merely
giving the general pattern of the proof. The ar@i;}.mn‘u requires first
the existence of a nonzero number A such that

A
P FLCHUN S 6
Q'(x, 8) - (SL, BD)? .}(:IJ, 8) ( )

is & density function; ie., a numlge}"?é' such. that
f_:”g'{&:,‘ dr = 1 (7)

Of course b = 0 will mf;e\g(:c, 8) a density function, heeause fiz; )
is a density fun(ﬂt-ior{. \\To show that such a nonzers value of k exists,
we consider the ezpedted value of [f(z; 8:)/f(x; 0u)]* a3 & Tunction of %,
say $(u), O

0 -
& _ flas 8y |, dr
QDT el - i) stesoas ®

Ob‘{i@ﬂ}r ¢(u) iz always posilive, and furthermore $(0) = L. We
({n\ also argue that é(u) becornes infinite when % approaches infinity
in‘éither the positive or negative direction. Sinee f(z, 1) and f{z, 3‘_3)
differ, there will be an interval or sct of intervals where their ratio 18
greater than one. Ovwer such intervals the integrand becomes large
with increasing w, and ¢(u) — o as w— . Similarly there will be
intervals where the inverse ratio is greater than one and the integrand
becomes large for large negative value of w. This is enough to sho¥
the existence of k. (Of course, ¢(u) may have a minimum at # = 0,
in which case % would not exist, but this can happen only for particular
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POWER FUNCTIONS ' §16.3

values of 8, not in general.) So far as our argument goss, there may
be several values of u for which ¢(u) = 1. Actually there is only one,
for the shape of ¢(u) iz as illustrated in Fig. 70; the minimum, though,
may be to the left of the origin so that A may be negative, Thus there
exists o nonzers k in general such that ¢{f) = 1, and (6) is therefore a
density funetion.

P}

o ! o u
Fra. 70,

A

One now sets up a scquential test of thievriull hypothesis /7 that the
densily function is f(z; 8) against tbé;ﬁlﬁemative hypothesis H) ﬂwjt
the density function is ¢(z; ). Ofeourse the null hypothesis here 18
true by assumption. The limi{Nor the likelihood ratio are taken to
be A* and B, Thus the tost Continues as long as

&
gy 0g(re; ) -+ gEm; O < AF )]

B s 0o ) i 0

N

and ceases Whe;r\i;h\e vatio cquals or falls outside these limite. W.'e are
assuming hcye\\that h is positive; if it is negative, 4 and B are iuter-
changed. Wl view of (6) the test defined by (9) is exactly equ}vaﬂﬂﬂt
to the otipinal scquential test under consideration; i.e., (9) is equivalent
to \ Y .
B o G 00 (@s; 00) - S Bn) o 4 (10)
F@s; 8)f@e; o) - - - flams 00)

Thus the rejection of If, implies the rejection of Hp. Bub w{};’:a:n

¢ompute at onee the probability that Hg will be rejected when ufls

troe [5 (x; 6) is the true density function]; hence we haf"? P(ﬁi) o

fe; 0. H » will be rejected when it is true with Probablllty o &Ftlh

ictepted when f7 1 18 true with probability 8’ where, in gecordance Wit
371



§15.4 SKEQUENTIAL TESTS OF IIYPOTIIESES

(2.7} and (2.8),

~l =8
A= —7 {11}
B

1 — &

Bh~

(12)

-

On solving this pair of equations for o', we find

]
o = P(6) gih—_};ﬁ N\ (13)
Thus to find the ordinate of the power function at a ppi{ifs‘ﬂ? one first
finds the function ¢(u) defined by (8) for that value ot 8; then puts
¢(u) = 1 and solves for u; the nonzero root is the(iimber A of (13),
which then detcrmines P(8). \\

As an illustration, let us consider the null 9¥p0thesis that the mean
of a normal distribution is uo against the :Qt.ernative that the mean is
g1 (with po < pq}, assuming that the varignce ¢ is known. We wish
to find the probability P(u) that pe will b\e rejected when the true mean
is u. The function ¢(u) is O

")

o &Y - ula—p)2e
¢lu) = —é_—j grllz—meaes) { € L Az (14)
— \/Qar.’q " -l fr—pa) 2 2

N

The integral is easily e\qziuated, and on putting ¢(u) = 1 and solving
for u, we {ind that op€ Yoot is « = 0 while the other is

\\
po= st re— 2 (15)
\ ¥, H1 = Mo

On subsfcj@ﬁ:ihg this cxpression for 2 in (13), we have an explicit
formulanfer P(u) in terms of .
16:4, Average Sample Size, The sample size n in sequenlial testing
is »a;’ré:ndom variable with a density function, say p(n), which may be
<‘c§etemnined in terms of the true density function f(z; 6). Thus

p(1) = P\ < B) + P( > A) (1
PR =PB <M<AN<B +PB <4, >4 @

and so forth, where the probabilities on the right, are determined
by integrals like that of equation (3.4). In this section we ghall
find an approximate expression for the expected sample size E(n) and
then illustrate the extent to which sequentiul methods may 8ave
observations.
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AVERAGE SAMPLE SIZE §16.4

et

f(z; 84)

f(z; 6o) (3)
and let 7 be the smallest integer for which & + 22+ + + » + 2, = Z,
does not satisfy

z = log

log B < Z, <log A 4)

We shall show that the cxpected value of the variate Z,, which
depends on the random 2's and the random variate #, is simply 1

E(Z,) = EmEQR) Ay

'\ .
To do this, we let N be some very large but fixed value of » a.;;gd‘disre—
gard that part of the distribution of n to the right of N. ?f}ié’fésultmg
arror can be made arbitrarily small by taking N sufficiently large.
Sinee N is fixed, it follows that \Y;

B(Zyx) = NEG) (6)

The variate Zx may be put in the form \ )
¢ = Zo s ™

defining another variate W,, and ]3;;’ ;{ﬁr;c.ue of (6)
E(Z, 07 = NE@) )

The trouble with trying 4o }}get- (5) directly is that the range of
depends on whether ¢ ﬁ\n\o’r i > n. In the latter case E(z) = E2),
but when 7 < n, the.fahge of 2 is restricted by (4). Now in (8) the
vartate T, consighsef 2's with 4 > n, so that the expected value of
each 2 in W, 15\@%3“) Thus

A E(W) = E@QEN — ) )

here tLlé'.‘éemnd faclor on the right depends only on the distribution
Of,g\;@hmbining (8) and (9),

NE(z) = F(Z.) + E(W2) _ (10)
= E(Z,) + E@IN — Em) (1)

which is the same as (5); solving for E{n),
E(Zn) (12)

E(n) = T
mple approximate formula

Thi‘i last eXDICS . .
) cssion enables cne to get a 81
: 7, takes on only values

for the expected sample size. The variate
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§1b.4 SEQUENTIAL TESTS OF HYPOTHHSES

beyond log A and smaller than log B. If one lgrores the amountg
by which Z, exceeds log 4 or falls short of log B2, he may say that Z,
takes essentially only two values, log 4 and log B, When the tmue
distribution is f(z; 6), the probability that Z, takes the value log 4 i
P(0), while the probability it takes the valuc log Bis1 — P(#). Hence

E(Z)=P® log A +[1 — P()] log B (13}
which together with (12) gives A
B(n) = P8) log A 4 .[1 — P® g B O g
(z) AN

This result enables one to compare sequentinl tests xy-'i‘cb\ﬁxed-swnple-
size tests. 7\

As an illustration, we shall consider the fgat\that p = 0 against
# = 1 for a normal population with unit varitee. Wo shall choose
o = .01 and § = .01; then (2.7) and (2.8pgive A = 99 and B = 14,
Let us further assume that the true pafamoeter valie is zero so that
P(8) in (14) is just .01. Also we need t6 compute the cxpected value
of K
LRy

2= Iog' ] N =2 — % (15)
which ig —14 under the tfie ciistribution. Thus
O .
LAN .01 log 99 4 .99 Iog L4,
o = 35
27 22196 log 99 9 (16)

To get tb\eéa:me control of the two errors with a sample of fixed size,
we recallthat the best test is made by choosing o number ¢ and
acceptihg or rejecting u = 0 according as # is less than or greater than
c. /Fhe probability « that H, will be rejected {(under p = 0) is
~

N fn [° 1 = _
&= Al5 ¢ mt gy — e dl
2 ﬁ V27 i

80 that for o = .01,
Ve = 2.3 @an

The probability 8 that H, would be accepted under I, (p = 1) is

C L
7 1 A ale—~1)
= / il e WBe-0 g e—uss2
:8 ’\ 2“_ /-_ w i ;'—27‘_ W
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SAMPLING INSPECTION §16.5

so that for 8 = .01,
V(e —1) = —2.328 (18)

On solving (17) and (18) for n, we find it to be 22. Thus in repeated
teste of the hypothesis in question, the sequential procedure would
require on the average only %44 or 41 per cent as many observations
ag the fixed-sample-size procedure.

16.5. Sampling Inspection. A particularly important application
of sequential testing is in inspection of manufactured items. Large
consumers sizels a8 retail chains, assembly plants, government ageneies,
and the Iike usually contract for periodic deliveries of items in lazge
groups called fofs, Certain specifications for the ifems in question
are stipulaied in the contract, and it is further stipulate(‘ihth&’t the
itemns shall be ingpected or partially inspected to ensur&tj:af’ only a
small proportion of the delivered items fail to meet theﬁi}.’}cciﬁcations.
Ordinarily, defective items are not so crucial as fo wetrant the expense
of eomplete inspection of all items, and sampli mspection is used.
That is, the supplier will inspect a sample p’f’\%he items of a lot and
estimate the proportion of the lot defective\AL the quality of the lot
appeurs salisfactory, it is delivered; otherwise it may be sold to a less
exacting consumer, or Lo the 01iginsJ'fpdﬁsumer at & lower price, or it
may be completely inspected (if ¢he inspeetion is nob destructive)
and the defcctive jtems remoyed When sampling inspection is to
be used, the actual sampling§rocedure is ofter a part of the conifract.
The supplier does not guathntee that the proportion of defective items
in submitted lots will be smaller than a given amount; he merfaly
guarantees to submityonly lots which have passed a specified sampling
inspection test, ) O\ . .

The simplegt\’ao\’% of sampling inspection plan is the so-called single-
sampling plg}xp ' One inspects a sample of size % and accepts the lot as
satisfactaryi! the number of defective items is less than or equal toa
gi"‘?? mithber ¢ : otherwisc the lot is rejected. The Pmbablhty_ of
ac€pbiiiy a lot under such a plan depends, of course, o0 the proportion
of défectives in the lot. The density function for the number of

defectives g is
; - M)
(x) ( n—%/ (1)

g{z) = N

n

where N is the lot size and M is the number of defectives in the lot.
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§15.6 SEQUENTIAL TESTS OF HYPOTHESES

This distribution is somewhat troublesome to work with, and since 5
18 usually quite small relative to ¥, it is customary 4o anproximate the
function by the binomial

@) = (i’j) (L — p) @

where p = M /N is the proportion of defectives in the lot.

The performance of a sampling inspection plan may be portrayed
by the operating-characteristic curve, which is simply s graph of the
probability of accepting the lot plotted over the range of N This
probability for the single-sampling plan is )

7'\

[ N

¢ %
Lip) = )o@ =2 Y Sy N (3)
@ =10 $=0

S .
using the binomial approximation as we shall'3oYMn this and the next
section. An operating characteristie is plotted in ¥ig, 71. 1f, for
example, one wished to pass all lots \:&-‘ii;-l{ﬁ}p'ur vent or less defective

% 3

LI'P} O\

1.0 N

01 730005 0.10 0.15 0.20 0.25 03 p
\:\’ Fra. 71.

and reié’(; all Jots with more than 6 per cent defective, the ideal operat-
ing ‘sharacteristic would be the dashed eurve of Fig. 71. This (301:11"]
\Qo’é"be achicved without complete inspection. Sampling inspectiod
will necessarily reject some of the acceptable lots and will accept some
lots which should be rejected. The more sarmpling one is willing to dc_),
the more nearly he can force the operating characteristic to approxi-
mate the ideal operating characteristic. The actual cxtent of ﬂ}f’
sampling in any instance depends, of course, on various economit
factors associated with the particular problem at hand—factors sutj»h
as production cost per item, inspection cost per item, dilference 1o
market valic of aceepted and rejected lots, ete.
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SEQUENTIAL SAMPLING INSPRECTION §16.6

Sampling inspection plans may be regarded as procedures for testing
hypotheses. Thus the single-sampling plan is just the proeedure one
would use to test the null hypothesis that the parameter p of a binomial
distribution has the value po againgt alternatives p > po. Given a
sample size n and a specified size « for the Type I error, the Type 11
error would be minimized for any p > po by choosing the integer ¢ for

which
> (1) rit - = 1= @«
5 e

and rejecting the null hypothesis when « > ¢. It is to be qbg’el’vgd
that the operating-characteristic function is simply one mihus the
power function of the test. A

Somewhal mere sophisticated inspection plans use dosble sampling.
A small sample of size ny is examined, and the lotaday be accepted or
rejected on the basis of this sample. But in boxderne cases asecond
sample of gizc 7, is examined before the lot 1\1‘.’111}, ly classified one way
or the other, Formally the procedure isn{)
Examine a sample of size n1. \ L
If 2, (number of defectives in wgh < ¢, accept the lot,
If z; > cs, Teject the lot. o8 :
If ¢; < 1 < cs, examine s setond sample of size 2.
If 21 + 2, < es, accepithic lot.

6. If x1 + 22 > e, rejeét)the lot. .
This proeedure conta.ink}hc germ of the sequential idea. Itis bet'ter
than single sampling in the following sense: Given a single-sampling
plan with sample’slzé # and a double-sampling plan with average sal=
ple size %, one/gali more nearly approximate the ideal operating char-
acteristic fkt-l}’ﬁhc latter. Or in other words, for a given operating
“‘harﬁtﬁtg?@sﬁc double sampling will require on the average lewer
obscryations than single sampling.
15,6 Sequential Sampling Inspection. We shall suppose t_hat l_arg‘e
are being dealt. with, so that the error of ysing the binomial distri-
bution is of no practical importance. Let us further suppose that the
supplier’s production process, when all i well, produces about 2dp§1'
cent defoctives and that the sampling inspection plan 1s sup posC Ot
8ecopt most, Tots with less than 3 per cent defective and rejech IO
lots with more than 3 per cent defective. This is the usual 81t(111ati?:1;
asupplier who contracted to provide better quality than hig pro I;FO;
Process was capable of would have little use for gampling inspect1ot.

877
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815.6 BEQUENTIAL TERTS OF HYPOTHESES

In setting up a sequential plan, one must first put the test in terms of
2 null hypothesis and a single alternative. Thus in the Present
instance one might test the null hypothesis Po = 025 against the
alternative p1 = .04, accepting the lot whencver the null hypothesis is
accepted.  Tn gencral, two values po and py are chosen and two prob-
abilities o and 8 for the Type [ und Type 11 errors. Thus one hus at
his disposal two points on the operating characteristie: (po, 1 — &)
and (ps;, 8). Omne could make the inspection plan very eritical at
p = .03 by choosing, for example, the two points (.029, 998N and
(.031, .001}, but in doing 50 he would ensure that conzlderable sampling
would be done. The actual choice of these two poin‘@s\'é‘eﬁends on,
economic considerations, «

The individual observations y; have the density Etxﬁ&ion

pl—py LY )
and if 2 ¥: is denoted by «., the likelihood ratio is
1 9\

Ny = PO oy )
pgn(]_ ._,_~p0)n T
Observations are taken until eit\hé?'" A = B, in which case the lot is
accepted, or M > A4, in whichedgse the lot is rejected. A and B are
computed from (2.7) and (2:8)*
To get the operating dlaracteristic, one first finds (), which is
simply \

)
| 3
"’('f‘f?.; ¥ [p%sm = po)l—w] ®

} i
:“ B P A P ufi—g
N, = 1 — pplv —) (~ )
.u\l. yE-Clp ( }) (pr_] | — pn

.x". ” o
=p(® Y it ] 4)
R\ p (pa) + (1 —p (1 — pn) ¢

S

\Sn‘d" the number 2 of Sec. 3 is the nonzero root of $(u) = 1, so that kis

efined by
(&y +(1 - )(—1 - p?)ﬁ =1 (%)
r Do pAT = o

This equation together with

A+ — 1
L{p) = T — g ©®

[obtained by subtracting both sides of {(3.13} from one] determine t-lEe
operating-characteristic function. Since the solution of (5) for b i
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SEQUENTIAL SAMPLING INSPECTION §15.6

« troublesome computation, one computes points on the curve by
choosing values for h arbitrarily and caleulating the corresponding
values of p and L{p) from (5) and (6).

Often a sufficient appraisal of the operating characteristic can be
obtained from five easily computed points on the curve:

Loy =1 : (7
L)y =20 8
Lipd =1 -« &)
Lpy =6 (19)
' log Gan
L) = log 4 i log B ;\'Q‘H
where ~\
' log [(1 — po)/ (1 — pul ,‘ : (12)

P log (pu/po) — og [ — 2/ (L~ RN

The fifth point [p’, L(p")] is between po and p smd" corresponds to
h = 0; the formulas (11) and (12) are obtained By letting & approach
zero in (5) and (#), which become indeterniififce at h=0.

&
:o\",.’
'\ [ 1.G P
\}: po PP
O\ Fre. 72,

plotted easily after L(p) has

The.ﬂri:e}}a e-sample-size curve may be .
' N 5), the ordinate of this curve

7/

be?{mofted. Referring to equation (4.1
(FigM72) is given by

E(n) = [1 — L{p)llog 4 + L(p) log B (13)

plog (pi/pn) + (4 — py log [(1 — p/{l — Do)

where wo have substituted 1 — L(p) for P (p) and

, IMf] (14)
B = E[ ph(L — po )
1 R R 2 (15

=p10g%+ Gl O g
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§15.7 SEQUENTIAL TESTS OF IYPOTHRYES

The maximum value of F(n) occurs very nearly at the point p’ given
by (12). At that point, (18) becomes an indeterminate form whose
limiting value is
log 4 log B
log (p1/ps) log [{(1 — p2) /(1 — po)]

This is approximatcly the maximum average sample size and oeeurs
when the truc proportion defeetive has the value given by (12},

15.7. Sequential Test for the Mean of a Normal Population. As s
final cxample of sequential testing, we shall consider the®{digided
lest of the null hypothesis 77, that the mean of a norma*pepulation
has the value . It is assumed that the variance o2 jsdwmotvn. Tt is
necessary to frame the test in terms of a single alterifative Hy T
we were interested in a one-sided test, say againsb;ilti?‘r-lm.t-ives &> pa,
we should simply choose some arbitrary valud ¥ (greater than wg)
for the alternative, But that alternative wilhbol sorve for the two-
sided test, becauso the power function apg\rpac-hes £010 as 4 moves to
the left. \

The trick here is to phrase the hypdtheses in terms of another param-
eter 5 which measures the distance o x from #o.  The new parameter
¢ takes only positive values anc}ﬁj&,f"deﬁncd by '

(16)

W

] =ﬂ::2: i i g > pe (1)

Sesmo—n i u < po C 2
The null hypothesis isim\ow 3 = 0, and the alternative is § = 8, where
8118 an arbiirarily ‘®hosen number.  Now one must sel up a somewhat
artifieial alt-emaﬁivc distribution function, because the number &
actually referg&o two distributions—one with mean wo — 8¢ and one
with mEBg&;N"-l— 81.  The alternative density function iz defined to be

§ : ] 1

1(.{:) =1 P (TR Ly +1

24 2r0 2% ¢

{ ’\z ) . - . : 1
\\}-—hl ch is clearly & density function. Under H, the dengity function 18,
of course,

lE-mburzel (3)

&
a3
S

1

T T

elta—pot/20] (1)

Jolz) =

It is apparent that the likelihood ratio will behave as we wish. If ¢
is to the left of uy — &y, the ratio f,/ fo will usually be large because of
the first term on tho right of (3), while if p > pq -+ 81, it will be large
because of the second term.
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<HQUENTIAL TEST FOR THE MKAN OF A NORMAL POPULATION §15.7

The test is now performed in aceordance with the usual procedure.
One chooses probabilities « and 8 for the fwo types of error and com-
putes 4 and 53 from (2.7) and (2.8). For a very sensitive test one

Ply)
1.0
-4
O\
™
-4 - -= & s
A=, Ao At #

Fie. 73
would choose 5, as well as « and B to be sLQxaﬁ“ Chservations are
made until A/
1 5
M o=10 70 )
exceeds A or becomes less than BN

The test given here for Hods merely one of many possihilities. We
have been quite arbitrary i) setting up the alternative density func-
tion, and it is entirely q{)ﬁseivable that some other form might improve
t!m test, might redugethie average sample size under the null hypothe-
sis, for example, ofNfright have other desirable propertics.

When the ‘v’u@}fice is unknown, several tests aré available; most of
them use welght functions of one Iind or another. Perhaps the
simplest fest’ is that based on the ¢ digtribution. If we denote by
gl ’;"u.)'ii.hé' density funetion for t with n degrees of frecdom and with #
th‘Kﬁl‘?&n of the normal population, then one may define

\, = gnlt; 1) (6)
* 7 gall; o)
Withn ~ 92,3 4, ... Although this funetion is not of the same

¢ the numerator an
dependent

(2.7) and

E}’pe as the others we have considered (hecause )
fhominator are not products of density funetions of in
Vatiates), it can be shown that the fest terminates and that

(2.8) determine A and B as before.
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§16.8 SEQUENTIAL TESTS OF HYPOTHESHKS

The criterion (8) refers, of course, to the one-sided test of te against
an alternate p, greater than w,. For a two-sided test of fo, ONe may
use

A — %Q’n("f, o -+ 6L) + }ﬁf]n(?’, Mo — 51~) -
" galts o) @

where § has the same meaning as in (1) and (2).

15.8. Notes and References. Sequential analysis Is a quite recent
development in the theory of statistics, having heen startedSn® 1043,
The theory is due primarily to Wald [1], whose excellentyand quite
readable book on the subject contains most of the develupniénts made
up to the date of its publication. Wald’s work has stifulated much
research, and the techniques of sequential analysj?: will doubtless be
extended considerably during the next fow yegr§, ©

Thus far, most attention has been given fo/the matter of testing
hypotheses, but sequential methods alge Ypromise to increase the
efficiency of estimation procedures, T e{problem here is to choose in
advance 8 1 — a confidence int-crjra{: of specified Iength and make
observations until the confidence interval can be said to cover the true
parameter valuc with the desired\probability.

The matter of testing compoéi te hypothescs requires further develop-
ment.  Wald has shown that this problem may be deali with by means
of certain weight functfohs chosen in an optimum faghion. DBut a
detailed general theofy )% not yet available.

A good expositionof sampling inspection from the practical point
of view is given &¥ the second refercnce.

1 A, Wald E“\Sequential Analysis,” John Wiley & Sons, Inc., New
Yorle, 947,
2. H. OQL"FI-{:eman, M. Friedman, F. Mosteller, and W. A. Wallis:
K ';f:‘ Bampling [nspection,” MeGraw-I1ill Book Company, Ine., New
. N York, 1948,
) 3
\15.9. Problems
1. Perform a sequential test of the null hypothesis that p = 45
agamst the alternative that p = .30. Let p rofer to the probability
of a head in tossing a coin, and carry through the test by tossing
coinusing @ = .10 and 8 = .10, The arithmetic is simplified by solv-
inglog X\, = Bandlog N\, = A for 2, (the number of heads in n t0s565),
thus obtaining acceptance and rejection numbers as linear funetions
of n,
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PROBLEMS . §16.9

9. Show thab equation (3.13) is corrcet when b is negative.

3. Assuming & lot has size N with 3 defectives, what is the exact
expression for the operating-characteristic function?

4. Show that the ratic 245 obtained at the end of Bee. 4 depends
only on the values of @ and 8 and not on the sizes of 62, o, and pu

5. Compare tho average gequential sample size with the fixed
sample size for the one-sided test of the mean of a normal population
when @ = .01, 8 = .05, and the allernative hypothesis i true,

8. Show Lhat the one-sided test for the mean of & normal population
with known variance may be performed by plotting the two lines

2 .\:\’
ys_-a ]ogB—l—“”—;—ﬁn NS ©
$1 — R y W
y E _..i-._ 10g A —i— #.G_Jr_'ul.n ’.’:.T ;
) 2 \V

n . .
in the n, ¥ plane; then plotting E x; against n ?&\t})e ohservations are
1 &

made. The test ends when one of the linqs’lzg,\crbssed.
T. Referving to Prob. 6, let ¢ = (u /2 and let the two con-
stants in the equations be denoted byband a;ie.,
N log A

o= 2———

A H1  Ho
Bhow that the power fuik&ién for the test may be put in the form

\) | — ghlomwb/et

7Y I Sl
£ } P(L‘) = PETCSIEN S GB(G’H)WI”

2o

)Y )
8. Ref‘é&iﬂé to Probs. 6 and 7, show that the expressi
average sample size may be writien

on for the

N©
Q) b4+ PO — @)
N\ By =

9. Verify equations (6.11) and (6.12).
10. Plot the power function and average-
the test of Prob. 1. . i
11. Plot the power function and the average*S&F‘]ple—sx
for the tost that the mean of a normal population 18 ZOT0

alternative that it is one. Let ¢ = 1, 0= 0L, 8 = 05.
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§15.9 SEQUENTIAL TESTS OF HYPOTIIGRES

12, TFind formulas for the power function and average sample sige
for sequential tests on the mean of a Poisson distribution.

13. Suppose a production proeess produces lots of size N with M
defectives in such a way that M has a binomial distribution. Bhow
that & sample of size n (with & defectives) can provide no information
about the proportion of defectives in the remaining ¥ — 7 items of 8
lot.

14. Suppose lots which are rejected under a gequential sampling
inspection procedure are completely inspected and the dofecti€ivitems
replaced by good items; this is a common practice. {.gb g be the

- proportion of defectives in the original lots. What will b thé average
proportion of defectives over all delivered lotz counting both those
completely ingpeeted and those passed by the sapdpling plan? This
function of p is called the average outgorng qua{{@&f“umr‘.ion; the maxi-
mum of the function is called the average ouiging qualthy Hmdl.  Make
a rough sketch showing the general shape of £the Tunction.

15. Referring to the situation describeddn Prob. 14, find the average
percentage of items inspected as a funétivn of P, counting both passed
and completely inspected lots. l\Iajm a rough sketch showing the
gencral shape of the function. 8\

16, Suppose & uniform dist.rflgﬁﬁon hag the range 0 <z < 4. Dis-
cuss the sequential test of.fﬁfo: o against # = ¢, with #, < #,. Be
carcful here; some of thefgencral formulas may not be applicable.

17. By an argument: similar to that used to obtain (4.5, Wald has
shown that LA

Elemg@] "} =1

A

where ¢(f) ig\the moment generating function of 2, e, () = E(e),

and wherevbhe expectation ¥ is over the joint distribution of the #'s

and t.-l‘reﬁeéindom variable n. This is called the fundamental identity

of seguential analysis. Use it to obtain (4.5},

~ 18. Use the identity of Prob. 17 to show that
~ gy - B2

| )
when E(z) = Q.

19. Tse the result of Prob. 18 to obtain {6.16),

20. Use the result of Prob. 18 to show that the maximum average
sample size for one-sided tests of the mean of normal population i
approximately —ab/s?, where o and b are defined in Prob. 7. Assume,
do not try to prove, that the maximum oceurs at k= Q.
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CHAPTER 16
DISTRIBUTION-FREE METHODS

16.1. Introduction. In Sec. 7.8 the important place ascribed to the
pormal distribution in statistical theory was justified on the basis{
that any kpown continuous distribution could be transformed to the
normal distribution. But, of course, experimenters quite frequently
have no knowledge of the form of the distribution with which fhay are
dealing, or at least so little information that they canpot'}prescribe
a normalizing transformation. Until recently there avas not much
to be done in this situation, and experimenters were wore or less forced
to make wholesale assumptions of normality. Bhring the past few
vears, however, techniques have been develo Pfor estimating param-
eters and testing hypotheses which requir€ assumption about the
form of the distribution funetion. Theke)techniques are called non-
parametric methods, or better, distpibuwiion-free methods. While ‘ghc
eollection of distribution-free met}qu'ls is not nearly 8o comprehensive
a8 that based in normal theorypa good beginning has been made, and
this chapter will present somieof the results.

Heretofore in denoling@ g&mple by %1, &5, © 7 T Tm the symbol 21
referred to the first olﬁil';’ation made, z2 to the second, alf'd 50 Om.
Throughout this chepher the notation will be interpreted quite differ-
ently. The symboh’, will refer to the smallest of the % observations,
&y will repre.u.;,eﬁ};“the sccond smallest of the observations, and so on,
with z,, t-h?x]{a?giést. Thus, for the sample of four observajtlons, 2, -4,
~1, 4, o rofers to the second observation, & to the tl-hli‘d, zg to the
fourt.ha;'aﬁd 21 to the first. The phrase ordered sample is often used %-10
i%?@;até this interpretation of the notation. Digtribution-free metb-

i jstics.
odre based entirely on these ordered observations, or order statis .
o both continuous anl

almost entirely
difica-

_The methods to be presented are applicable 0 X
discrete variates, but we shall direet our attention
to the continuous case, merely pointing out accaswnall;y_' the mo
tions that would be required in the case of discrete variates. tion-

16.2. A Basic Distribution. The whole stmcture,Of. d.lsil g';stri.
free mothods rests on a simple property of order statishics: t er dlered
bution of the ares under the density function between any two 0
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§16.2 DISTRIBUTION-FREE METIIODS

ohservations is independent of the form. of the dengify funetion. To
show this, we merely make the probability transformation described
in 8ec. 6.1. 'The density function for the ordered sample 2y, zg, + - -
T, 13

3

nlf(@df(we) - - - flan) ()

it f(z} is the population density function. The factor ! arises from
the fact that there are n! permutations of the observations and BVEry
permutation gives rise to the same ordered sample. The den ity for
any given permutation is just ITf(x,), so the density for the\grdercd
sample is obtained by summing this expression over all parmutatlons
of the »..  The variates in (1) arc restricted by the meq}}uhtms

—w <k L xy <<xy ot - <oz, <~.(08"‘: (2)

If we let m'\"\.'

- f_x‘wf(r) = F(;pi)":’ 3

A\ .
then in accordance with Sec. 6.1, the Qﬁ};ﬁity function for the u; is
simply L :

‘,'

glur, e, * -+, ) = nl Q <’u1 < Us e Cu, <1 4

which does not depend o f(:r)

The density function g(us - -, w,) enables one to find the dis-
tribution of any set of arefy under J(z) between pairs of ordered obser-
vations. For e*cample,‘?uppobo we desire the density function for the
areg under f(x) bdw\een ry and z,. This area, say v, is

B = e} — Flz) = u, — uy (5)
We first m’r&gratc out s, g, * + +, U._y in (4), then make the sub-
stltumon\mw- w1 + 2 and integrate out w,. Thus
O
"\.'..::' h{uy, u,) = j;‘ ce- L. Ll nldue dita -+ - dun-t ()
a\"4 _ 1% — ?/&1.)"_2' 7}
V e 0 < <up <1 (

and the density of 4, and » is
R, ) =nln — 2 0<u < (1 —2) <1 (8)
On integrating out uy, we obtain the required density
m@) = nln = D31 — v) 0<r <l ©)

which is a heta density funetion.
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LOCATION AND DISPERSION §16.3

More generally, the area w between x, and x, (s > r) under f{z)
can readily be shown to have the density funetion T

n!
(s —r — i}ln—8— r)!w

Tl - w0 <w <1 (10)

Algo onc carn obtain 4 joint density funection for several such areas.
The expected value of ;is

. 1 wua | u :
Efu;) = ﬁl - f-ﬂ ﬁ) nhig duy due + 0 0 ditg
; O\
e O
henee the expected area under f{z) between two successivre observa-
tions is N\
. )
E M) — A E e \
() = Blted) = 5 300 (12

Thus, on the average, the n ordered obaeri{at‘ib}s divide the area under
f(@) into n + 1 equal parts of area 1/(pA>) each.

16.3. Location and Dispersion. JIfinthe paramefric case we have
wsed the population mean and ‘sjt’.aﬁaard deviation as measures of
location and dispersion. Theg Qistribution-free methods use other
measurcs. ‘The center of t-h[e'\‘population ia defined to be the median,
. 88y », which is the point\that divides the area under the density
function in half. Thug »\s defined by

2Oy - f_”m f@)de = F &) 0
’\n

":’here fx) is ﬁi;\e: density function and F(z) 18 the cumulative diS’E:l'iblll-
tion, Thgfﬁledian is often denoted by Eso, and a similar notation 18
used f?rgqt.‘her percentage points; thua

\ ) F(tas) = 15 @
defines the 15 per cent point, £.15, of the population.

As a measure of dispersion one uses the distance between two per-
centage points. Thus, one frequently used measiTe of digpersion 18

(3)

interquartile range. Bui
the 90 per cent range

T.60 = E.?ﬁ - 5-35

which is called the 50 per cent range, OX the

Many other ranges are often used, for example,

T'B_ﬂ = fo5 — £gs or the 3314 per cent range 7 = tys — Ene
- 387



§16.3 DISTRIBUTION-FREE METHODS

Point Estimation. The population median » is estimated by the
sample median & which is the middle observation if .the sample size
is odd or the average of the two middle observations if the sample size
iseven, Thus

E = Zpu fn=2r+1 #
= /]"é(;rk “[“ $k+]) n =2k (5)

The sample median £ is not ordinarily an unbiased rstimate of » even
when # is odd, for the fact that E[F(£)] = F(») does not imply that
E(£) = ». However the bias is not zerious and must appmafh Zero
as the sample size increases. N

To estimute percentage points, the z; themsoly 05 ft"‘l’u::;h estimates
of the 1002/ (n 4 1) per cent points. TFor other mmlue& one may use
linegt interpolation. Thus to estimate £ . fr&n\ a gamnple of size
n = 10, we observe that z, estimales the S4gs point and x; the 341
point; hence we use as the estimate AN

/{-; '7"':‘ (11}3 - :C-g) (6)

(yiven estimates of percentage ,pu‘nntb, one can obviously estlmato the
various ranges,

Confidence Intervals. ;X“ednﬁdence interval for » iz casily cono-
structed by means of th¢ binoroial distribution. The probability that
an observation fallg tn Jthe left or right of » iz one-half in cither case.
The probability th\b exactly 7 observations fall to the left of » is just

20 o

£\
The pr@abﬂity that x,, the rth-order statistic, exceeds » is then

f':'. =1 n
O Pl > ) = ("*f’) (1) ®
\ ) £20 k3 2
and similarly
Plz, < #) = E (f‘) (%) @

1=

If we now suppose s > 7, add (8) and (9), and subtract both sides
from unity, we have

P, < v <) = i (?) (%) (10

i=r
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LOCATION AND DISPERSION §16.3

which provides a confidence interval for . Ordinarily s is taken to be

n — r + 1 so Lhat the rth observations in order of magnitude from the

top and from the boltom are used. Thus for a sample of size 6, two
-possible confiddence intervals for the median are

Plee < v <) = 1 = (39)% — (4)8 = 31g, = 07 (11)
and

; 14 50
- If one wished to do so, he could approximate a 95 or 90 per{Cent
confidence interval by using lincar interpolation between (11} andy12),
but this is vavely done in practice. One ordinarily 1'est}'jgts\’himself
to the confidence levels available with the simple order sﬁati?;tics.
If the sample size is small, one has only a few.Goifidence Jevels
available; in particular, when n = 2, there is ouglyvthe 50 per cent
eonfidence interval given by AN

Plag < v < @) =5ﬂ {18}

For moderate sample sizes the binomijal Sum in (10) may be computed
directly or found in tables of the irlc’prifplete beta function, Tor large
n one would use the normal appré&imation to the binomial. Since
the index ¢ in (7} is approximately normal with mean 2/2 and standard
deviation /7,2 for large &y e 95 per cent conﬁdenqe interval, for
eample, is obtained ty bonting 1.96 +/n/2 observations to the left
and right, of the sample’median. .

A gimilar technighe’ is employed to obtain confidence 11%1361‘}'&15}01‘
perceniuge poipts‘.} If &, is the 100p per cent point of the distribution,
then the samd Argument used to obtain (10) shows that

K\ ae1 |
.f,’; P(&?r < &, < xs) = Z (?:) pé(]_ _ p)n—@ (14)

.'\

Thus for a sample of size 6, a possible confidence interval for the

25 per cent point is given by

Pocencn =Y @ = @

A 96 per cent upper bound for .25 is given by

Pleo < xg) = i(?) (i)i (%)n—a ~ 96 a8)
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§l6.4 DISTRIBUTION-FREE METHODS

Tests of Hypotheses. To test the null hypothesis » = », against
alternatives » > », one uses the relation (8), choosing in advance an
integer r so that the probability of a Type I error will have ag ncarly
as possible the desired value. Thus for a sample of size 6 one can
make the probability of a Type I error 744 2 11 by choosing r = 2.
If after drawing the sample one finds 25 < »q, the null hypothesis is
accepted; if 25 > wy, it is rejecled. In the same fashion (wo-sided
tests of » = »g may be constructed; the two-gided test is obyiously
equivalent to constructing a confidence interval for » and accopting or
rejecting v = »p according as the confidence interval does, ¢ydoes not
cover ¥, Tests on a percentage point £, would be cursisd ottt by the
same technique, using probabilities p and {1 — ) ingtg{a.(} of 14 and 14

It iz now apparent that the distribution-free nutﬁifodé, hesides being
exlremely general in that they require no :a,ssumfxthm ahout the form
of the distribution function, are also exthdardinarily simple. No
complex analysis or distribution iheory iS:IQ\(‘JlEd; tha simple binomial
provides all the nceessary equipmenf{ for estimation and testing
hypotheses when one is dealing with\akingle population. The only
ineonvenience is in the pauncity of sjgﬁ'rﬁcance levels or conlidence levels
when the sample size is quite sgall.

A word about the discrote gase is in order here. We have assumed
the density function wag tontinuous. If it is discrcte, then the
equalities obtained in $his section for confidence intervals and tests
need to be 1'&1)15,0(:(:1{{‘iﬁequalities. Thus (10), for example, becomes

A s—1 "

NO PG < v <) > z (f’) (%) (17)
The red s for the inequality ig in the fact that certain observations
may_Ue duplicated. Thus suppose one wished to estimate v for a
dig@e‘éfe distribution using a sample of size 6 and a 78 per cent con-
fidence interval given by «; and z5. Now and then the two smallest
Nebscrvations 21 and zs will be equal so that the (xs, zs) interval 18
equivalent to the (z1, ;) interval and hence corresponds to a prob-
ability larger than .78. The same thing may happen at the upper
limit; @5 and s may be equal so that sometimes the (zs, «5) interval
is equivalent to the (vs, z) interval; occasionally it can even be the
same as the (#1, 2¢) interval and thus correspond to the 97 per cent

rather than the 78 per eent level, .
16.4. Comparison of Two Populations. A great many dist-ribut}on'
free methods have been developed for testing whether two populations
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COMPARISON OF TWO POPULATIONS §16.4

have the same distribution. We shall consider only two of them, and
ot the end of this section we shall derive a confidence inferval for the
difference betiween two population medians, First, we shall obtain
a simple result on the distribution of arrangements of two sets of
observationg from the same population,

Let xy, ®2, * * * , Ta be an ordered sample from a population with a
density function f(z), and let g1, %2, * -+, ¥m be a second ordered
sample from lhe same population, Let the two samples be combined
and arranged in order of magnitude; thus, for example, one might bave

Y1, L1, T2, Y2, Ty Yoy Yo Yoy Tey © ° " K 52
We wish to find the probability of obtaining a specific axr%pgément of
this kind, < )

If the 2's are transformed to s by the relation (2.3),_and the ‘y’s
transformed to ¢'s by the same relation, the_jo'{ﬂg density function
of the w's and ¢'s is D

’..x\
gla, ue, * ¢ -y Unyy V1, 0 " :':';.”m) = nyln! 2

"
~

The probability of a given arrangqlﬁéni; such as (1) is found by inte-
grating (2) over the region defined by

0<'Ul<uki<}\“2<ﬂ?-<u’3<..-<1 @)
s QS o
le., v1 18 integrated frem zero to wui, then u: from zero to s, ete. . 13
readily scen thut thé¥alue of the integral is mlnal/ (1 + g, or simply

i T A a1+ B
1 ( 1:,— " *{'ﬁSince there are exactly ( ! " ) arrangements of
1 3

ma's and.‘n'-z\y’“s, it, follows that all arrangements
equally 1kely. b

BeDest.  We now turn to the question of testing the null hypﬂfr;'
sis What two samples have come from the seme Poplﬂ“-'?tlon' b -'ee
observations in the two samples will be denoted by z’s apd ¥'5 a8 abm d
The two sets of observations are combined as in (1) and the num ke:r ;
of runs counted. A run is a sequence of letters of the. = ;ri)f
bounded by letters of the other kind. Thus (1) starts with 3m on;
one y; then follows a run of two #’s, then a run of‘ one ¥, ?n S;(;ple;
81X Tuns are exhibited in (1). Tt is apparent th-a,.t if th‘e ’m'flo b-e P
are from the same population, the z's and ¥'s W-ﬁl Drdmar‘ldil gepa-
mized and ¢ will bo large, If the two populations aré widely
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§16.4 DISTRIBUTION-FREE METHODS

rated sc that their ranges do not overlap, d will be only two, and, in
general, differences hetween the two populations will wend to reduce 4,
Thus the two populations may have the same mean or median, but
if the z populalion is concentrated while the i population s dispersed,
therc will be a long % run on each end of the combined sample and
there will thus be a tendency to reduce d. The test then is performed
by observing the tolal number of runs in the ecombined sample, aceept-
ing the null hypothesis if 4 15 greater than gsome specified number d,,
or rejecting the null hypothesis if ¢ < do. Gur task now is"td \Jeter-
mine the distribution of & under the null hypothesis in ordeq that we
may specifly dy for a given level of significance. £\

N

n iy
We have geen that all of the ( ! ?’ ) arrangerdeitts of n; &’s and
i1 o

ne y's are equally likely under the nuyll hypofc-hés?& Il iz necegsary
now to count all arrangements with exacthy\N# runs. Suppose d is
even, say 2%; then there must be & runs of %’ and % runs of y's. - To
get k runs of 2’s, the n; #’s must be dividedinto & groups, and we wish
to count all permutations of the & npnbiers in cach group. In short,
we wish to count all the ordered fb—pa,r‘t partitions of #n; with zero parts
excluded.  This is readily done v. 1th the aid of the gencrating funetion
described in See. 2.6 for onumeratmg the svays of geiting a given total
with a set of dice. The r;equlred number is the coefficient of (™ in

.i“t\ E
(¢ + 2%+ - )k = (—g—-) : @

2O o [k~ L3\, p
7, =& Zu( E—1 )'L )

7\NW 3=

O\
—1 . R .
Whlﬁh s (?; 1 ) Similarly there are (?;‘ B 1") L-part partitions of

Ty, eXGhldmg ZEro parts. Any partition of the 2’s may be combined
I any partition of the »'s in two ways to form a sequence like (1);
the first = partition or the first i partition may be put al the beginning
of the sequence. Thus we have found the density for even values of

fd:
62062
hd)y — e N VNE—1/ o g (6)

71+ Ny
ki3
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COMPARIZON OF TWO POPULATIONS §16.4

and by similar reasoning one finds for odd values of d:

(m — 1) ('ng - 1) + (m — 1) (??,2 — 1)
Mok + 1) = S F k‘(ln +n3_1 k ™
i 2
1

To test the null hypothesis in question with & probability p for the
Type I error, one finds the integer dy so that (as nearly as possible) ., 2\

do : . AV
Y hdy=p N
gd=0 Y \
and rejects the null hypothesis if the observed d does I}Q‘!ﬂvb)(ﬂ%&d do.
The computution involved in (8) ean become quité\tédious unless
hoth 7y and 7. are small. The distribution of ¥\jecomes approxi-
mately normal for large samples, and in facxt{bh‘e approximation is
wsually good enough for practical purposch, When both ni and #s
exceed 10, The mean and variance of Afdhare

Ne/

Onme el
Ed) = o & ®
5 _ Qi ng — N — ) (10)
({.’:;,;‘-1— ng)i(n + ne — 1)
and if wo let ) \
ny e = 0 By o=na fe =0 (11)
these moments becié;ﬁg, for large », approximately
"\’\ - E(d) = 2naf (12)
O\ - o5 = dna’f? (13)

’ RN . PR T

T hﬁ}%mgn-sa.m ple normality of k(d) is demonstrated by using St.u'llng?
fofmpla to evaluate the factorials in (6), substituting for & in terms o

i de negd by

4 a0
208 /7
pro a.{}hes

#0d showing that the logarithm of the resulting expression ap

_ log /2 — Y8

8 % becomes infinite. We shall omit the detalls.
393

Using this result,
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one would determine d,y for testing the null hypolhesiz at the 05
level, for example, by putting the right-hand side of (14) equal to
- 1.645 and solving for d.

The run test iz sensitive to both differences in shupe saud differences
in location between lwo distributions.  Often, howesver, in praclice,
one docs not earc about differcnees in shape; he is concered only with
location. That is to say, he would like to test merely the nudl hypothe-
sis that the population medians are equal: », = »s. Il 18 not pessible
to make such a test, but the following test of fi{z) = f{y) is sexfaitive
primarily to differences in loeation and very little to differepees in
shape. P -

Median Test.  As before, let there be an ordered samiple zi, @,

-, ¥, from fi{x) and a sample gy, ya, * ©  , Yedvom F2(y). Let
Z1, 3, * ' * , Znepny De the ordered combined samg}'q.'\’The test of the
null hypothesis f1{z) = fu(x) = f{x) will consisinig/linding the median
Z of the combined sample, then counting the Wumber of 2's, say m,
which exceed % and the number of ¥'s, saygids, which cxceed 2. If the
null hypothesis is ttue, we should expe}c-t-’:?m to be approximately n./2
and m. approximately n./2. It is clearthat this test will be sensitive
to differences in location between fil#) and fo(x) but not to differences
in their shape. Thus if fi(z) and f2{x) huave the same median, we
should expect the null hyputht)sfsi to be accepted ordinariy sven though
their shapes were quite d(ferent.

To make this test, the distribution of my1 and m, under the null
hypothesis is rcquirea\\ Let z, be the ath observation in order of mag-
nitude, let my be themumber of «’s which exceed 2., and let my be the
number of y’s which exceed z,. The joint density function of m:, ®
2z under t-h@\{'}ft;ll hypothesis is

A\ ]I )
laﬁfﬁf?mW%WMHU—Mmmwmﬂ

\1(:,;1) [F(Za)]ﬂg—mz['[ —_ F(gﬂ)]mg]- + ’(:;11) [F(Za)]m_mi[l . F(za)]ml]

.| _JE“?WW%WWHU—”@WM%J(W

m_ﬂ(ﬂ-z - M

where the first term takes account of the case in which z is an z obser

vation and the second term of that in which z, is a y observation; F (2}

iz the cumulative form of f(z), and dF(z,) represents f(za}A%- On

integrating out 2, and combining the two resulting terms, one finds
394



COMPARISON OF TWO POPULATIONS 816.4

the frequency function for m, and ma to be, say,

e

We observe, on comparing this expression with equation (12.10.17),
that it is just the distribution of the eell frequencies.in a 2 X 2 con-
tingeney table with all marginal totals fixed when there is independ=

glmy, ma) = (18)

enee.  The contingency table is O\
'\
| i \,
my 7  tHe— 6 |
™
. fy — My | Ta — Ma a ""\m'\i 4
1 | Ty R TR M

where the marginal totals are shown to the ngﬁ\‘lt of and below the
cosed part of the table. If my + ne Wete dd, one would choose
4= (n, + n. + 1)/2, whereas if the sumbvere even, one would cho‘ose
8= (Ry + na) /2. Thus the null hyp’dﬁhesis may be tested by. using
sither the ) criterion given by (12:10.8) or the chi-square criterion
given by (12.10.20). Tt a1 -+ niwére small, one would use (16) to com-
pute the exact probabilitic Anstead of using the approximate proba-
bility given by the chi-squiae distribution with one degree of freedom.
The approximation ig gixly good if both ny and 72 exceed 1{').

Confidence I nﬁervals:.’ In order to obtain exact conﬁdenc!a I.Jntewals
for the difference hetiveen the medians of two popula;tion_s, it is neces-
sary to aSSllnl.q;i}lé-t the distributions differ only in location. Lettmi
Ty Ly o ;\,ix;u be a sample from a population with n:tedlsmt ;;tzﬁlle
Y1, s, * +\\) ¥n & sample from one with median vz We assime
variates s

\"‘\’.. W= kg — ¥ and vy =Y T ¥2

have the same density function, sa¥ flu}, with median Zel,;;'e 3322
sample of u’s and the sample of v's are then tW0 gamples from & te the
Population. If one chooses two integers 7 and s, he may compy
Probability that u, exceeds v, as follows:

r—1 e
ez - f » S(T) Pyl — P dF @) izo(i).
N (Pl ~ Py &0
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oy ()0)

(18)
i—o e ket + T
(s + 1) ( s+<
r—1(8+i_ 1)(?11+n.2— s—'z.')
— 1 . —
_ Z 8 e — & (19)
=0 (’nl + "-’!-2)
Ty I\
Similarly A
AN
(3’ 47— 1 1y e — 8 7\é
o g — 1 Ny — 3y W
Py <npy = SNI U JN men )
( ) ’.:.;J i1 + ?1-3, ."'T 3 ( )
n SV
If we now suppose r < s, 7’ > &', and vy > vy, then
P(?}s’ — Ep vy — < e — xr) '\‘
= P{n < v; and up > ) (21}

3‘1}"—“P(uw > 'Us) - P(ur’ < Us’) (22)

and the left-hand side of thiﬁ{fi:ﬂ‘ation provides a confidence interval
for v; — »1 with a confidencé¥evel which is caleulable by means of (19)
and (20). The confidente Nnterval provides a third test of the null
hypothesis that the t%9 distributions arve the same: the hypothesis
would be rejected if b interval did not include zero.

We shall outlie)n large-sample approximation which may be used
when 11 and 2a%oth exceed 10, Since the sum expressed in (19) is
one when talfeit over the whole range of 7, we may regard the summand
as a dengity Function for a variate 7 and find the normal approxima-
tion tg(that function. The sum may then be approximated by inte-
grg@ﬁg} the approximating function. The mean and variance of 7 are

Wl = _°

(%1 (23)
ﬁ.z+1
o o [GHD043) | D _ o s-nl] 24)
“"‘n2+1[ mt2  Tmre ~ @+

and their approximate values when n( and ns are large may be found
by letting

- ne =n n = na iz = nP g = yng = pByn (25)
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COMPARISON OF TWO POPULATIONS §16.4

and keeping only terms involving the highest power of n. ~ The results
are .
H(i) = nay (26)

1—v
g (27)

The large-sample normality of ¢ may be proved in the same manner as
outlined for ¢ in (8)., The sum in {19} may then be approximated by

o5 = nay

4 1
f Vo (28)
T VAT )
Wwhere 'S\
4 = {(r — 14+ 18) — nay (”.}‘. ...(29)

vney(l — v}/8 .\x\;

Given s, one would choose A to give the desiretl probability level
(~1.96, for cxample, to make the probability .025)’and solve for 1.

The question arises as to how s ghould be ¢hosen. Clearly s should
be greater than ns/2 and r should be less’tliaf #2/2.  One might, for
example, make the two differences eqaal;” but a shorter confidence
inferval may be expected by makingj%he" differences equal on “stand-
ard” gcale. The number of obésbr;fations less than »; is approxi-
mately normally distributed with*mean n1/2 and standard deviatioT:L
v/11/2; similarly the numbefof ¥ observations exceeding vs is approxi-
mately normally distrit {éd}with mean 7nz/2 and standard deviation
Vne/2. We shall thgnﬁetemine s g0 that

\ZZ}\} (/2 —r _s— (/8 (30)

in this relation in terms of (25} and

o
If one substitutes for ny, ns, and s
' solution of (29) for 7, he

;012’{8\8:1?@1" 7, then equates the result to the
ngs w

o 1 + A €3y
=2 g u (VB + )

neglecting terms with higher powers of 1/ +/n; in terms of th

s¥mhbols this becomes
w4V @
2 7 o/ Vi)
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and from (30)
poe B A V'my + g
T2 2y + Vi
In similar fashion one would argue that good choices for # and ¢ in
(22) are given by changing the signs in (32) and (33).
16.5. A Distribution-free Test for One-factor Experiments.* A
factor is tested at % levels with »,; obscrvations at the 71h level ; the

(33)

observations may be denoted by zy; with i =1, 2 - - - , K and
i=1,2, -+ -, 5 Thenull hypothesis that the faclor hagdoeffect
will be fested by testing in fact whether all the n = =n; (3\bs\er\ ations

may be regarded as coming [rom the same population. ~8rdinarily in
practice one ig not much concerned with whether the eclf’distributions
differ in shape; he is primarily concerned with “he‘thm they differ in
Jocation. Henee the test we shall consider will %e a gencralization
of the second test given in the preceding sealaon!

Let m; be the number of obscrvations in $he 4th cell which exceed
the median of the whole set of » obser\'\athma and construet the con-
tingency table: \

"

y me SN0 ome | &

L &Y

NS

1 = My | Ay ——‘mg Ry == Wi | v — &

y N\ 7
" \ !

where ¢ = n/2if n\skven or (n — 13/21if »is odd. It is easily shown
by the argument. used in the preceding seclion thai the density
function for thém, is

P ()

R\ glmy, ma, -+ ¢, my) = L =
£\
a\Y4 2

\'fhis is just the ordinary distributionfora 2 X & gontingency table with
all marginal totals fixed when there is independence. Hence the null
hypothesis may be tested by means of the A criterion or the chi-square
criterion of See, 12.10. The chi-square criterion is ordinarily easier
to use, and using the present notation, it may be put in the form

= M= 1) X i_(mi_@)z | @

aln — g) L 7

(1)

*Bections 16.5 through 16.9 are based in part on unpublished work of Geors¢
W. Brown (see Preface),
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where we have retained a factor » — 1 in the numerator of the coeffi-
cient instead of replacing it by =, as is usually done, because % js
agsumed large.  The expression (1) has o distribution VEry aceurately
approximated by the chi-square distribution with r — 1 degrees of
freedom even if n is only of the order of twenty provided all the #; are
at least five.  Tlor smaller values of the #’s one should compute exact
probabilitics from (1). .

To estimaie the difference between main effects of the factor at two
levels, one would use the difference of the cell medians, and a cons\,
fidence interved for the difference would be constructed by the method

deseribed in the preceding section, RV,
16.6. Two-factor Experiments, One Observation per Cell" The
observations ure denoted by zy with ¢ = 1,2, + - + | r apdy,
L&

i=12 -+ ,¢

The row factor is thus being tested at r levelsland the column factor
at ¢ levels, The distributions of the 2 h&\fe ‘medians

vij = v —1—,;:;*{5 B 1)

where the median of the numbers'a); is zero as is the median of the ﬁ’
The a; and 3; are identified Wi‘éh row and column effects. The 'drs-
tributions of the 2y are agéumed to be identical except for location;
thus the variates z; — ghgare all supposed to have the same density,
say f(u). Also the «'Save assumed to be continuous variates. If one
orboth the fuctors have randomly chosen levels, we may suppose that
the density talids“dccount of random interaction effects as .Well a8
error effects, ¢ Ql‘.)’f.herwise it is necessary to assume the interactions are

\

Zerp, \“

We ﬁhﬁl} examine the null hypothesis that the Tow eﬁfectﬁ, iy
Zery, '\'j[fhder this hypothesis all the obgervations in a given c.oh?mn
#avg'the same distribution. Let & be the median of the observations
nhe jth column, and in the two-way table let the obs ervi?f:l: ](11 xe;
be replaced by a plus sign if it exceeds 4 or by & minus sign 1 Eal
06, The » % ¢ {able then consists of plus and minus signs it ffqr is
Mumber if  is even, or with ¢ more minus signs than plas Slgli:s o are
0dd. " Let 1m; be the number of plus signs in the #h row. Lﬁ; B; /2
M fact no royw effects, then we should expect the m: t0 dlﬁeﬁr 1‘; then
ouly by random sampling deviations, but if there are row elec S’While
the rows with positive cffects would have an excess of plusfsﬁns signs.
those rows with a negative effect would have & deficiency (1);}1]; :;gns are

he nuy] hypothesis is therefore tested by testing whether

399
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§16.6 DISTRIBUTION-FREE M¥THODS

divided evenly in rows. In fact, we may construct a 2 X r con-
tingency table:

Ty e -t ity A

€ —m | ¢ — e | e —m, | cfr —a)

where ¢ = /21 rizeven or (r — 1)/2 if v is odd. Tt turns out that
the m; do not have the ordinary contingencyv-table distribabion ag
was the case in the preceding scetion. However the digigihution of
the m; is such that the large-sample distribution of an gndlagous chi-
square criterion has, in fact, the chi-square dist:rihuf{ic;h with » — 1
degrees of freedom. 8o this table may be tested, like an ordinary
contingency table with all marginal tolals ﬁxedmj\‘

The distribution of the m; is best exhibited\inthe form of a generat-
ing funetion; the distribution itself does nofthave a simple closed form.
Suppose we let £; be associated with a pldg'sign in the firgt row, #» with
a plus sign in the second row, and geMorth. Iet ¢a(fs, fo, © - -, t)
consist of the sum of all ferms that, cn be formed by multiplying the
t's together ¢ at a time. Thus, for example,

olly, b, £y, 1) = Lo Gy + tids + fofy + i At (D)

N .
Each term of ¢afty, ¢ \ , £.) describes a possible arrangement of signs
in a given columny,  Furthermore it is casily argued that each arrange-

ment of signs igyeeially Tikely; hence the probability of a particular
2K

arrangemetr{iy 1 / (;) Now we congider the function
N\

\\”

N o= [Peltute -, L) )
O .

Y (-

A litfle reflection will convince one that there is a one-to-one eor-
regpondence betwcen ways of getting terms (e - - - O in the
numerator of ¢ and arrangements of signs in the r X ¢ table which
give rise to mi, ma, - - -, m, plus signs in the respective rows. Hence

*

¢ = EE ce Y glm, ma, s, mpE - - - 8 (4)

I Wz i
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where g is the density function for the m;.  On putting all the ¢ = 1,
¢ becomes one, since the sum in (4} is then just the sum of the density
over its whole space; this is evident from (3) also, since

r
$a(l, 1, - -+, 1) = (a)’

there being (:1) terrog in ¢a(ty, £, -+, &)

Tt is evident from {(4) that ¢ is a factorial-moment generating func-
tion for the m; Thus, '

Blmy) = g'-;:? with all & = 1 : AN
51 s N
e e e—1 7%
— cﬁba--l(’?, 53, Cee tr) [qsrr.(fl, i?; - ’ tr)] 'at!'% =§1 (ﬁ)
. (7‘) . ‘M’\\' .
. 14 w4
(?' — 1) AN

el AV @

v N\ v/

a o\ ¢

= % ,":‘7:“ (8)

which is the same for all my, anq gimilarly the variances and covariances
of the m; are found to be N

Qea(r — a) | ©)
DN~ 2 .
N T Py (10)
HD T = T ST et/

'\Y -
Taking M, to§b‘e’ the dependent variate (they are related by Zm; ;‘;)3;
the matrig of varigsnces and covariances for my, g * " 7 Myt
be IE{.GPL’(?d to get

\/ i M an
T calr — @)
I el VI a2
o= alr — @

: seally normally
We shall not demonstrate that the ms are agympt”fﬁmﬁm of the

Gstributed, The simplest proof appeals to & gener are distributed
tentral-limit, theorem. If variates ¥y, ¥~ * ¥ be shown that
With finite variances and covariances, ¥i, then it ¢an
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the averages §; for a large sample of size ¢ are approximately normally
distributed with variances and covariances ~y/e. In the Present,
instance, y1 Would be defined to be one or zero according as there was
or was not a plus sign in the first cell of a column, and siratlarly for the
other y’s. The ¢ columns arc then regarded as ¢ observations on the
i, and the § are then mi/c, which by the general theorem must be
asymptotically normal as ¢ becomes large.

A more direet proof of normality for large ¢ could be construcied by
replacing the & in ¢ by ¢%/V® (except £, = 1), then showing t\hat log ¢

approaches, as ¢ becomes large, the expression A\
NS ¢

r—1 N
E 8 \/{; a + "% 2 ? B8y ”.( h’:‘. (13)
=1 iy 2

T %

A
the exponent of ¢ in the moment gencrating fnption of 2 normal dis-
tribution, as shown by equation (9.5.4). & quadratic form of the
large-sample normal distribution will hay{ the chi-square distribution

with » — 1 degrees of freedom; the quadrhtic form is

. 1-5:1 ril gif; (m"_‘ ?) (m’_ _ C{_a) (14)

I T .%

and it may be reduced tg{;‘l“ne expression

s\ J
&\ ,
e = 1) (m _ 9)2 (15)
O eal(r — a) - r
2NX

The ordinary\cﬁi-square criterion given by equation (12.10.20), i
applied to 82 X r table at the beginning of this section, wonld differ
from (16} only in that the numcrator of the coefficient of the sum
wogl,c\lfhre r* ingtead of r(r — 1), Ilere 7 is not assumed to be large
gonthe difference may be appreciable.

The null hypothesis that the row effects are zero may thercfore be
tested by the eriterion (15), using the ordinary chi-square distribution
unless ¢ is small.  For practical purposes the large-sample distribution
is satisfactory if ¢ is as large as 10, or even if ¢ is only 5 provided reis 20
or more; for smaller values the exact probability should be computed
by means of (3). To test column cffects, one would, of course, simply
reverse the roles of rows and columns in the above test.

16.7. Two-factor Experiments, Several Observations per Cell.
We shall suppose that there are rows, ¢ ¢columns, and 2 observations.
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per cell.  The observations are denoted by zg; withe = 1,2, - - - |
j=1,2 -+, ¢c;and k=12 .- h Jfis assumed that the
variates are continuous and have the same distribution except for
location; i lhe population cell medians are »y then the variates
24 — » all have the same distribution. - The »; may be put in the
form

vi =v+a+ B+ vy ' 1)

where the o; have zero median, the 8; have zero median, and the vy
have zero modians in every row and column. If the levels of a factor
are randomly chosen, then the effects are random variables and arg’\
regarded as having a zero population median rather than a zelo™
median themselves. B A ¥y

Main Effects against Inferaction. 'To make the test analogafs to the
* test of muin effcets against interaction in the ordinary{analysis of
variance, one simply finds the cell medians &; (medistiOf the h obser-
vations in the 7, 7 cell) and uses the tests presented iu*the preceding
section on these cell medians. ) \\ :

Joint Tests of Main Effects and Inieraction,X By using a procedure
similar to that of the preceding section if is.possible to constru.ct a
simple test of the hypothesis that a factordias no effect Whateve.r, either
in main effcets or in interaction eﬁ"geté." Thus we shall conmdf.ar the
null hypothesis: oy = 0 and vy = O Let & represent the median of
all vh observations in the jth golumn, and let my b'e tl?e number. of
observations in the 4, j cell, which exceed ;. .Conmder_mg & speclﬁg
columnn, we have just the one-factor situation discussed in Sec. 5, an

the m,; have the density\
O\ -
N ( )
O\ !Ll_mi- @

& B
\’ Ny ¢
where\g‘; 'rh /2 or (rh — 1)/2 whichever _is an integer. ’I;,h?g;i iis;:};-
for all the m,; is therefore obtained by taking the Pmdu(':t {:1’ tribution
from one to ¢. We need not, however, deal with this ﬁlréis one
expect in the case of small numbers. -T,O test the ' hip:cﬂuinn, and
would compute the chi square of equation (5.2) for eac

add the results to obtain 2

rh =05, ) @
xt = a(rh — a); ¢ -
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which is approximately distributed as chi square with e(r — 1) degrees
of freedom, and the approximalion is satisfactory erough for mogs
practical purposes if & s 5 or more, or if reh 1s 20 or more.

Main Effects against Deviations. The distribution-free test analo-
gous to the analysis-of-variance test of main effects against deviationg
is fairly simple if interactions are assumed 1o be zero, Referring to
the numbers m,; of the paragraph above, leg

E M = Ny (4) -

7 N\ -
i.e., nsis the number of observations in the 7th row w hi;ah:&\"ceed their
column medians.  There being ch observations in Ao, we should
expect the n; to be roughly ¢4/2 under the 111Lll,}bﬁmthesis. The
hypothesis is tested by means of a chi-sguare qni‘t«érinin mach like that
of the preceding section. We shall merelyJelitline itt derivation.
The 2 X r contingeney table here is: v

\
n \J/
—
7
7 Tig RN ‘ v
) 3
S N SN, ¢ : .
ch —ny | ch — By (4 b — e | o{rh — )
S0 i

E Y

but. it does not have the urd*i’ﬁafry contingency-table distribution.
A factorial-moment generating function for the n; ig

~\ 1 b )
. -ig"t,.) = coeflicient of ] 24 in H—M—B’{t) (5)

by, by, - &
b I\ - (}'/;r,)c
A i i
f

. . A%/ . .
Using thlﬁ,\'Qne finds the means, variances, and covariances of the z:
o be ol

§ Bn) = & (6)

~O° o _ealr = Dk — o) -

\ 3 Ty = ‘_—“}T(?E—__T— (f)
. _ca(rh — a) L.

Ty = m 1 &7 ®

The inverse of the variance-covariance matrix for ; = 1,2« ,r—1
13 round to bhe
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and the chi-square criterion is

x* = rirh - 1) (ﬂs - c_a)z (10

" calrh — a) £ -

with ¥ — 1 degrees of freedom. :

Interaction. All the tests described thus far are computationally
quite simple—merely a matter of counting observations and comput-
ing a chi square. To test the null hypothesis that the vy of (1) are ¢
zero, it is necessary first to remove both row and column main effects
by an iterative reduction; then one proceeds with a test similar\to
those already described. . O

Letting & be the column medians as before, one removes the, column
offects to o first approximation by subtracting the & frony Zshe observa-
tions of the jth column to get a reduced set of obserm@ans:

x:ﬂ; = Tijg — fj :.\\: (11)
One then finds the row medians £ and subj;rg,}ts'these out to get
xé;k = 3’2:‘:; f’:‘ﬁ ) (12)

If the plus and minus signs are ,ba‘iéiﬁced in the columns (they will
obviously be balanced in the rows), the reduction is complete. But
ordinarily the subtraction of dherow medians will upset the balance of
signs in the columns, and t’is necessary t0 find the column medians
&' of the &, and subtr}t these out to get

(13)

P\ =l - &

O _ -
This process¢iy“continued until both rows and c?lumn.s have zero
medians. ‘&é could, of course, start the reduction with the.row
mediang of the original observations rather than the column medians.

Aitér)the reduction is completed, one counts the numbzr of };llul?
sighg/m,;, in each coll, counting the zeros as one-half plus and ope-ra

minus, The numbers my and b — 7 form a 2 X}j . fhcoilsl,tlr?liefl E);
table with all marginal totals fixed, &nd_ the nall ypotl e; pndzence
tosted by the ordinary chi-square criterion for testing maepe !

i ]
in such a table. This interaction test s VErY ncarly bl.'lt. n(?t completely
, hi-square criterion 18

distribution frce. The approximate ¢
(14}

, mimh = M, M.4)

406
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with (r — 1)(¢ — 1) degrees of frecdom whera
S omy; = 2 Wiy m,; = E Mgy W o= 2 Wiz (15)
k) i p

The expression simplifies somewhat if Mi, = ch/2 und m; = rh/2, but
this will not always be the case owing to the presence of zeros among
the reduced observations,

All the elements for testing in factorial experiments have heen pre-
sented in this discussion of the two-factor experiment.  The siethods
carry over directly to more complicated situations, The general rule
for testing one factor or set of factors assuming the proseneewold second
set of factors is to fit the second set of factors using\niédians, then
classify the data according to the first set of factors.And iost for Afty-
fifty splits between positive and negative d(zvigﬁidris in the various
classifications.  All thege tests are special casgslef tests in the gencral
linear regression problem which will he desecibed briefly in Sce. 9,

16.8. Simple Linear Regression. A ebfitinuous variaie 2 has a
density f(z) whose median is of the forrg »

v = o &
where o and 8 are unknown p@mﬂ{eters and 2 is an observable param-
eter, On the basis of a samiple of n observations, (xy, 2,), (x4, 2v), -
R T desij@i to estimate o and 8 or test hypotheses
regarding « and 8. . 2D

Point Estimation, \S}lpposing the paired observations to be plotted
a8 7 points in the g 3 plane, the problem here is to fit a regresgion line

of the form A\

O 7= ot @

to the p}ﬁ%}i points. 1f we denotie the estimates of @ and 8 by & and
8, the two conditions which determine & and J§ are
p '\

at

O ) Median of (z; —
Median of (z; —

— B =0 for 2, < 3 3
- EZ;) =1 for 2> Z (4)

31

=

where # is the median of the 2. Thus one divides the observations
into two groupg, using the median of the 2's, and chooses that line
which makes the median of the deviations zero in each group. (If it
happens that several 2 values fall a4 2, then the < sign in (3) and >
sign in {4} would be replaced by < and 2 if sueh a replacement would
more nearly divide the points into groups of equal size.)
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SIMPLE LINEAR REGRESSION §16.8

In praclice, unless the number of observations is quite large, the
simplest method of determining the line is to plot the points and use a
transparent ruler to locate the line by eye. For machine work, the
following iterative procedurc may be used: Find the medians of the
¢'s and *'s in each of the two groaps. The glope of the line jomning
the two points determined by these four medians is a first approxima-
tion, say &', to 8. Let the deviations of the z; from the line,z = §7,
he

wf =2 — 8% (5
A slope &' is fitted to these deviutions in the same manner a3 above t6
get o cosreciion to #. The second approximation to 8 is O\

g' =g +d O e
Now new deviations N

o = fla=a—8u D 4

N\

&
are computed and a slope & fitted to them. The third approximation
to B is : \
0 3 1 p \\’
ﬁfl’! = IBH' + aﬂ'“\ W (8)
and the iteration continues until f is defepmined to the de:v,ir?d degree
of accuracy. Then & is the median 8fthe final set of deviations.
Tesis of Hypotheses. To test themull hypothesis, @ = acand 8 = 8.,
one divides the points into twelgroups at 2 and tests whether the two
groups are both evenly diyied by the line. Let my be the number of
poinis above the line f()r“”z}é 7, and let Mg be the nurr.lber .of pc‘)mffs
above the line for z; 3% Both m and ms have the binomial distri-
bution with paraméler onc-half; hence _
Sl 2 ny’ ©
O | . .
Lo [(ml - i) + (mﬁ 4-) ]
will ha.vﬁoépuproxima.tely ihe chi-square distribution with two degrees
dc ‘hich case one would use the exact

of frebdom, unless » is small, in W
‘{%}i‘iﬁution to compute the probubility.

"0 tegt o = e only, one would fit a line, T =
determining # by the condition

Median (z; — a0 — B2) = mEfE?n (z: — a0 — P23

& <E
The number of points, m, above the fitted line (in both ﬁmui)}? corﬁ
bined) has the binomial distribution with mean n/2 under the n

hypothesiz,

ap + Bz, to the points,

(10
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To test 8 = #y, one would fit a line, x = & + 8o, to the pointg
determining & by
@ = median (z; — Bz (11
The points are again divided into two groups on 2 and the numbers
my and m, of points ahove the line in cach group connted. These
with (n/2) — m: and (n/2) — ms form u 2 XK 2 eantingency table
with all margins fixed, and {unless n is small) the null hypothesis may
be tested by (9), which in this casc has only one degroe of frecdom, and,
in fact, may be put in the form
A\

. N2 N\S ¢
xt =0 (-m1 - f) A (12)

[
{

Confidence Intervals. To obtain a conﬁclencgiﬁt."ervai for @, one first
fits a line z = f#z to the data by the conditibg

NY;
Median (x; — 8z) = me{i,a}l {x; — Bz) (13)
N

g < E

1f the deviations of the @; from thig line are denoted by 2, i.c., if

,xi\'*—;:’x,- — Bz (14)
then the estimate of « is $hd median of the 2}, and a confidence interval
for « is obtained hy applying the method described for » in Sec. 3 to
the . X\

The simplest déseription of a confidence interval for 8 is to say that
2 1 — p confiddide interval is the set of points 8, which would not be
rejected atthe’ p level of significance by the test deseribed above.
Thus orgigﬁght determine the confidence interval by trial and error.
An spproximate method, which may be ordinarily expecied to be
quitetsatisfactory, is to fit the ine s = & + fz and rotate it ahout the
pqi{;\‘a where it intersects the Ime z = 2 Since the number of points,

1, above the line and to the left of Z is approximately normally dis-
tributed with mean n/4 and variance n/16, the limits of the confidence
interval would be obtained by rotating the line until m, reached its
p/2 and its 1 — (p/2) levels. The slopes of the line in {hese two
positions approximate the ] — 7 confidence limils of 3.

16.9, General Linear Regression, The trestment of the more
general case is a straightforward extension of the methods alrcady
described. Let there be obscrvable parameters 21, 75, - ¢+ , & and
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let the regression equation be of the form

k -
'y=an+2ar’-r 1}
1
On the basis of n observations (3, 2u, %2, * * © , &) With
i=12 -+ n

it is desired 1o estimate the o's or test hypotheses about the «'s.
Suppose first that the regression does not involve as, 50 that we,

merely wish to estimate ay, @, * * -, &z The & conditions on the
observalions which determine these estimates are 5 \:\
'\ N
k k « N
Median (i — ¥ &2,) = median (g — ) &2 {2)
2ri S3p (J‘ ; ﬂ) i >0 ( ' 21: rd)‘

¢

¥
there being k& such conditions, one for each valuewca} #. Thus the
observations are divided into two groups by the\median of each of the
k #’s, and the medians of the deviations in eaeh group of any pair of
groups are required to be equal. Now tgriﬁlg to the ecase in which
constant eq is involved, the condition’ foi'"determining a i3

ty = media,r[' fg}i’" z&rzﬂ') (3)

or, what is the same thing, .
:\-Ied\ieip\(y; G- Zaz) =0 @)
e relations (2), it is clear that the median

on esch side of tie equation must in fact be the median of the whole

set of deviatipns hence must be &. Thus to fit & regression function
of the form((1), one may specify the conditions (2) and (4), or he may

combinedhem into

If we consider any“ene of th

Median (yi — @ — D) = median (s — o — Tézn) =0 ()
e L R
Tt ié worth noting that the estimation of 1, oy e c}tlf (113 t;)nt;rte:xy
independent of aq; one could malke any assuhmptlfin be wished about as
without influencing the estimates of the ot .er e
To test hypotheses about the o’s or estimate the-m oy conﬁdZ{lce
intervals, one would use the procedures deseribed in the p{c:letqlgg
section. Thus to test ax = auw, 0B would fit the other o .f w@l?l
means of (5) with & replaced by @0 and the relatl'on for ;‘ >—< 5 1able
of course be omitted. One would then test, using 4 '
409
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whether the signs of the deviations were split fifty-fifly below and
above .. A confidence interval for a; is the gel of values e1p which
would not be rejected by the test. To testa set of the o’¢, for example,

to test whether the first ¢ of the «'s had the values ¢ = ay
(t=1,2 -+ ¢

one would fit the other o’s using the last 7 — ¢ relations of (3), then
construct ¢ 2 X 2 tables like that uged in the preceding seetion fOuest 8,
adding the individual chi squares to geb a eriterion with o dBgrees of
freedom. A confidence region for the ), o, + - - . o4ty be eon-
structed from those points in the {en, @y, =+ -, Q-.J'n)\s}_mc-c which
would not be rejected by the test. N

The actual fitting of a regression funetion 1'(‘3(;1}11&39 an iterative com-
putation. The constant term a, is estimaped st by cquation (3).
A first approximation of to &, is obtained biNlinding the slope of the
line joining the median of (15, 25) for 2. B and the median of (¥, %)
for z; > %. The & are then used to p.o?n}iutc devialious

r j r
Vi = gy olzy
a7

N

which are again fitted to the z.; in the same fashion. The slopes
obtained are added to th&a! to obtain second approximaiions, o,
The process eont-inueg;im\ltil the desired accuracy is achieved; then ap
i estimated as the median of the final set of deviations.

16.10. Tests ofAssociation. (iiven a sample of # observations from
a bivariate pgp‘ﬁ]:ﬁ:ion, @y v1), (s, 12), + - -, (o, #x}, the problem
1s to test whether the two variates are independently distributed. We
assume b¢th“variates are continuous so that the probability is zero
that two\Observations have the same value,

Cartingency Test. The simplest test that comes to mind for this
prf)};?lem i9-to test whether a regression line fittad to the points has zero

“slgpe. The test amounts mercly to dividing the » points into four
groups by the two lines 4 = Fand ¢ = £ The numbers of points n
the four quadrants form a 2 X 2 contingency tahle and have the con-
tingeney-table distribution under the null hypothesis. The chi-square
criterion (with one degree of frecdom, since all marginal tetals are fixed)
may therefore be used unless » is small.

Corner Test. The so-called corner test appears Lo be the best test
vet developed for the problem st hand. There iy no proof that it 18
best, but in the event ¢ and ¥ are not independently distributed, this
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TESTS OF ASSOCIATION §16.10

test appears most likely to reject the null hypothesis. It is as simple
to use as Lhe contingeney test.

The test is performed as follows: First the observations are divided
into four groups by the medians as in the contingency test (the solid
lines of Iiig. 74). Now we shall arrange to deal always with an even
nuraber of poinis, If » = 2m, the two median lines will not intersect
any points. (In practice they may, because of coarse measurement.
{f, for cxample, the horizontal line intersects two points, one may
choose one of them arbitrarily and move it slightly up or down accord;
ing as a tossed coin falls heads or tails; the other would be movedin
ihe opposite direction. A similar procedure would be used for(feur,

Tz ) ’\:\
J e ,
. m’\i
L] * - ) \ \
L N
- " . " ,i N S e .
r‘ - ] Y N/ R - x &
. . Q s e
TR AT
| \\ ) s
o~ : Fra. 74
N/ ‘
Bix, - - - pniﬁ‘ﬁs“ on & median line.) If o = 2m + 1, the two median

lines \.t..rill;e\élzt;}{ pass through a point. In case it is the same pomt, that

poInt iglomitted. In case the two points are different, tl'ley are Fo}tlh
omii.lg%d" and a new point constructed from the 1_3W0 coor{‘lma.tesF(.) t72
siivted points which are not medians. The circled plomt in Fig.
§'&§ added to the original data in this manner. , Thus, in any case, We
she al i ven number of points, 88Y 1. _

‘“h}Fli': 83;8\1‘1;? 1?1?6: c?f Tig. 74 are DOW const.ructed. Starting at tjl;i
left, & vertical line is moved to the right until one ensoun'tetrse :CESL N
on the opposite side of the horizontal 11.1’16 f.rom the ;;St I')Onflr encont
ercd. The upper horizontal dashed line 18 move foml o e
until one encounters & point on the opposite gide © . x = o
first point encountered. The ot;};fr two dashed lines are
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similarly, the right one by moving to the left, the lower one by moving
up. Let r; denote the number of points to the left of the jefy, line; r,
denote the numbher of pointls above the upper ling, ete.  Points in the
upper right and lower left quadrants arc counted positive while thoge
in the other two quadrants are counted negative.  Thus in Tig, 74,
e = ——]_} Po = 3, 3 = "J., Ty = 4,

The tesi eriterion is

r=rid oy oy (1)

and it is intuitively clear that a large positive or negative vellue of ig
evidence against independence while small values of r ire ekpected
if the null hypothesis is true. We must find the r}iae%g‘ibuti:ﬁl of »
under the null hypothesis in order to determine the/itical level for a
desired probability of a Type I error. o

If z and y are in dependently distributed, thehaTandom sa mple of n
pairs (z, ¥) is nothing more than a sample of s and a sample of ny's
paired at random. If the z's are ordered Sith z, the smallest, #, the
second smallest, and so on, then the sample of 1 y's may he paired
with the z’s in »! ways corresponding.to the n! permutaiions of the
ordered y values, and under the nyull My pothesis all of the permutations
are equally likely. Our distribution problem therefore is simply a
matter of counting the number of permutalions of ihe 2m y values
which give a specified Va.lmui{ of r; this number divided by {2m)!is the
prabability of r, ¢ 2\J

Let us suppose for thﬁ\}noment that all four of 71, 7y, 75, 74 arc positive,
and suppose also that.the number of pointsin ihe upper right quadrant
i8 j; then there Willhe m — J points in the upper left and in the lower
right quadrant@®end 7 points in the lower loft quadrant. The numbers
rz and r; depend only on the m 2's greater than # and the m ¢'s greater
than g. 1‘"61' rato be positive, the j # values in the upper right quadrant
must, inelude the top ry 4's but not the one just below them. The
o%r 7 = 2 ¥’s in this quadrant must therefore be scleeted from the
M ~7ry — 1 smallest of the m y's greater than ; this selection can be
made in (m ,j_jﬂr: 1) ways. The jy's that have been selected must
now be associated with jof the 2's to right of # and among these must
be the top r: 2's, since 7y is assumed positive, but not #s,_.,. The
other j — 7; values of = may therefore be selected in (m ;jgrs ])
ways from the smallest m — ry — | values of z to the right of .
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A similar argument shows that there are

(m—r.;—l)(m—ﬁ-—l)

J— 7 Ji—n

gelections of ¥’s and 2's which give positive values of 7 and ry in the
lower left quadrant. After all these selections have been made, the
remaining m — j y values above §f are assigned to the remaining m — j
values of 2 to the left of # and the remaining m — j ¥ values less than
7 are assigned to the remaining z values fo the right of £ The g
values in any quadrant may be permuted at will. Thus there aregt
permutations of y values in the upper right quadrant, (m — j}l:pér-
mutalions of & values in the upper left quadrant, and so on. {The total
number of y permutations which give J points in the( @gper right
quudrunt and the given values of the r's 18 therefore D ’

(m -1 — 1) (m — Py - 1) (m —rg — 1) (m A — 1)
i—nr j— 12 j.—Ta :\\,J‘—?::; .
LGB — Dim — I 2
For any other assignment of signs .t-o':tfl{e’ r's, the argument is just
the same, and the expression (2) would be changed only in that tl-he
lower index of the binomial coeffielents would be different for negative

s, If welet ss (@ =1,2 34) represent the numerical value of 7e,

1.6., 8g = g if 1q 18 positive wnd sa = —7a if 7o 18 negative, then the

binomial coefficient corrésponding 0 7 in (2) is

N
“:\ m——sa—l)
".\‘.3 j-‘Sa

if 7 is positivfi%“a:nd is
A #

" m— 8 — L
Q oy N

N,
NS

sils now that it is fairly

Ty i Ve have given enough det :
0 R Wo e ® ting function for r1s

eagy to show that the factorial-moment gencra

&.(0) = L) = E(f:fl-l—d‘g+rs+r4)

Tl m— DY

e, (2m)!

") s
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and, of course, the probability for a given value of r js the coefficient
of ¢ in (3).

When 7 is small, (3) may be used to tabulate the distribution of .
The large-sample distribution of 7 is not normal. 1t can he shown,
though we shall not do so here, that when 2 becomes mfinile, the
generating function (3) becomes sitaply

P(1) = (i i 4 i 2—{a+1)!—s)4 ~ @)

a=1 =1
N

RGN
The limiting distribution has been tabulated, und it is ,fQu\rEd thal the
5 per cent limits on 7 are 4 11 and the 1 per eent lintitsre +14; 1,

!

P(—1l <r < 11) =~ 05 .\1% (5)

so that if r equals or exceeds 11, the hypothess of independence is
rejected at the 5 per cent level of significased

The small-sample distribution of '?'”Hé,é’ been tabulated, and it is
found that the limiting 5 and 1 perpedut levels are quite satisfactory
if the sample size is ten or mo;e.’"'Thus} thongh the distribution
problem is rather tmublesome;f’th'é application of the test is quite
simple, ONY

16.11. Power Funetions. “No generally accepted theory of power
functions for distributio ~free tests has yot been developed, and we
shall therefore confing{our discussion Lo a few brief remarks.

The great difficulfy™in obtaining a power function arises from the
fact that the fundilenal form of the distribution is not specified. Sup-
pose, for exandple; that one wishes to test the null hypothesis that the
median » of A population has the value v = 0. What is the power of
the testof Bec. 3 at » — 17 14 is apparent that it depends entirely
on thedform of the distribution. If the distribution happens to be
normab and ¢ = 0.1, the power will be very high at » = 1 even for
small samples, but if o = 10, the power will he quite low for small

mples. It is thus apparent that » power function in the ordinary
sense does not exist even for specified family of distributions ; the
actual distribution is needed.

To cireumvent this difficulty, it has heen suggested that the power
be computed as a function of F(») instead of as & fuynction of v; F(x)
is the cumulative distribution of the population. The null hypothesis
mentioned above takes the form F(0) = 14, and the alternatives are
0<FO) <1 excepting F(0) = 14, Thus the null hypothesis states
that = = 0 is the median of the population while the alternatives state
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that z = O is some other percentage point of the population. This
power function for the test of the median is then identical with the
ordinary power function of the test that p = 14 for a binomial popula-
tion. 1t is clear that this device is applicable to many of the tesis
discussed in this chapter. '

16.12. Notes and References. Many writers have contributed to
the development of distribution-free techniques of analysis. A large
share of the credit for these developments belongs to 8. 8. Wilks, who
was amony the first to realize the importance and potentialities of*this
ficld and who encouraged many of his students to work in it. A paper
which gives a comprehensive survey of all the developments upto the
date of its publication and a rather complete bibliogrf&phy is 8. 8
Wilks, “Order statisties,” Bulletin of the Ameriegn\M athematical
Sociely, Vol. 54 {1948), pp. 6750, RY

16.13 Problems

i. Find the density funoction for u;—‘-&"(&:,), where % 8 the Tth
ordered observation of a sample of gige n from & population with
cumulative distribution F(z). O ' .

2. Derive the density functippfgiven in equation (2,10) by integrat-
ing (2.4). N ’ o ’

3. Derive (2.10) by a gdometrical argument, coneuderl'mg the z axis
divided into five interyéls as jllustrated. The sample 18 r?garded’ ag
goming from a multinemial population with five categories having

Ny z
Ay Az X
O ' — 2)Az
probabilities F(y — Ay/2), JW)AY, Flz — A2/2) — Fly + Ay/2, ); Ea,l)l 5
1 — K% Az/2), and in guch a way that r — 1 observations ol in
the fits ‘"category, one in the gecond, and 80 ol. The density ol ¥
fla)Swith cumulative F(z)- . _
~ (\ 4. Use the geometrical method of Prob. 3 to find t};he ]Olﬂtbfli?:;g
\Vtfunction of u, the area between g and =, and v, the area
x, and z,, with g <r <8 < & .
5. Ef};?owl thjt the expected value of the larger of a gample of two

: iation with zero
observations from a normal Popu . tion
variance is 1/+/7, and hence that for the general normal populatio

the expected value is » + (¢/ Ve ;
Gqf)[?c( ) is an observation from a bivariate normal POILUlatE“
A Y and correlation p, show & at the

with gero means, unib vaTiances, ) ——7r
expected value of the larger of i‘;‘: pis vQ 2

mean and unit
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7. Derive equation (4.7},
8. Verify equations (4.9) and (4.10). :
9, Show that { defined by cquation (4.14) i3 approximately nor-
mally distributed for large n.
10. Verify equations (4.23) and (4.24),
11. Verify equation {(4.31).
12. Derive the distribution given in (5.1).
13, Verify (6.9) and (6.10), and show that (6,11} and {6.12) d({in
fact define the inversc matrix.
i4. Provide the details of the argument for normality Whmh uses
(6.13}. O
15. Venfy (6.15). N\
16. Show that (7.5) is a gencrating function for Ehe ffu torial mo-
ments of the n,. w\
17. Venfy equations (7.6} through (7.10).
18. Show that the distribution of = of “we\\l(] 18 symmetric about
r = (), hence that E{r} = 0, \
19. Show that the limiting variance B4 Y is 24.
20. Check the statement at the ghd of Sec. 10 by tabulating the
cumulative distribution of the numcrlfai value of r forn = 1. If s
is the numerical value, it is fognd ‘that P{s > 10) = .0642,

P\("s > 11) = .0436

P(s = 14) = 0127, K&> 15) = .0095. The corresponding values
for n infinite are .0583,".0342, 0082, .0050.
21. Lomplete the“derlvatlon of (16.3).

22, If &y, £3, %) -+, 2. is an ordered sample from a population with
cumulative:distributmn F{zx), find the density for
RS o = P ~ Fa)
AN . : [Flx.) — Flx1)]

\23 The active life #, in hours, of radioactive atoms has the density
(178)e=?. To estimate 9 for a particular kind of atom, a sample of #
atorns is put under observation, but the experiment is to stop when the
rth atom has expired; i.e., it Is Intended not to wait until all the atoms
have ceased activity, but only until r of them (r chosen in advance)
have. The data consist then of 7 measurements =y, s, - * * , & and
#n — r measurements known only to cxceed z,. TFind the maximum-
likelihood cstimate of 8, and show that it has a chi-square distribution.
Note that the likclihood contains the factor {1 — F{z, )" where Fz)
is the cumulative distribution.
416
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24. Referring to Prob. 23, must one start with newly activated
atoms, or is it all right to start with atoms that have already been
active for various lengths of time {and are still active)?

25. If z is uniformly distributed between 8 — 14 and ¢ + 14, find
the density for the median & for samples of size 2% + 1.

26. Referring to Prob. 25, find the density for 2z = {(#1 + xa11)/2.
Is z or & the better estimator of §?

27. Show that the sample median is a consistent estimator of the
population median. \

28. We have seen that the sample mean for a distribut-ipn\with
infinite variance (like the Cauchy distribution) does not_nbcessarily
converge in any sense toward the center of the distribution as the sam-
ple size increases. Does the sample median converge to the population
median in such cases? R4

29. 1f a population has density function )

7

f@) = Y R
= %e(’f—'e) ..\.s ‘S

D Sy

find the maximum-likelihood cstimate*of 8 for samples of size n.

30. A common measure of asaqf;is;ﬁ”lon for two variates & and ¢ is the
rank correlation, or Spea,-rmanfé’c&rrelation, The x values are ranked
and the observations replaced by their ranks; similarly the v observa-
tions are replaced by their ranks. Thus for samples of size n onc

might have:

the ordinary correlation is computed
63d?

nd—-n

Usingft}lese paired ranks,
~O E()E:_X_)(_I:_i_:__}i_)__ -1 -

3 .S = — = = N
\ \/E(X" '—X)EE(Yi—' })“
3 L. = X‘-" - 1'—".
where the capital letters 1‘epresent the ranks, and d;
Verily that the given relation Js frue.

[Norr};:iz"*' =n(n+ D+ 11/6]
1

Prob. 30 is independent of the

:ctributi 8 of
31. Show that the distribution of 50 provided that they are inde-

form of the distributions of @ ai:lv ¥



§16.13 DISTRIBUTION-FREE METHODS

pendently distributed, hence that S is a distribution-free criterion for
testing the null hypothesis of no agsociation.

32. Show that the mean and variance of S under the hypothesis of
independence are zero and 1/{(n — 1). To do this, show thai S muy
be put in the form

5=t o er

nt—n 4

where } = Z{¥, (replacing X, by ), and observe that the coefﬁ{iqnt of

1
I % in . {:\
3 ~A

. S‘ O
il (Fur) &
nI 73 'Hl I‘:\§

is & factorial-moment gencrating function fon @
33. Apply some of the distribution-frec I{@t 10ds to sets of dats to
be found in problems of Chaps. 13 and 1{‘3

P
NG
 { ).
« \
R N
5‘\“
AN
N N
’\g’“‘
A
S
O
). N
£
> N
7N
& >
t:\w/
'S M
N

4ig






DESCRIPTION OF TABLES

1. Ordinotes of the Normal Density Function. This table gives values
of N\
1
) = — 8—32/2 £\ *
f ( ) \/2# \. \\
for values of = between zero and four at intervalg ()(an{Oi Of course
one uses the fact that f(~a) = f(a) for negative valhes of «.
IL. Cumulative Normal Distribution. This tab?afét-es

Fl) = f L oy
o /27r’\\

for values of x between zero and 3.5 At tervals of 0.01, For negative
values of z, one uses the relatig;’rzﬁ(—x) =1—=F(x). Vulucs of =
correspending to a few round values of F are given separalely beneath
the main tabhle. N\
L. Cumulative Chi-sqtmre Distribution. This table gives valucs
of w corresponding to :-.}mi}nV selected values of F(w) where
S
NF@) = / T—2/2 g—es2 g
9 N/ 0

Q 2 (n — 2);201

far n, the Qg'gib'er of degrees of freedom, ecqualto 1,2 +--,30. For
larger va@e& of 7, a normal approximation is quite accurate. The
quantiy v/ 2u — /27 — 1 is nearly normally distributed with zero
meafdand unit variance. Thugs Us, the a point of the distribution,
\ﬁmy"be computed by

Ua = 1o (2a + /20 —T)2
where z, is the « point of the cumulative normal distribution. As an

llustration, we may compute the .95 value of » for # = 30 degrees of
freedom;

wys = 15(1.645 -+ +/50)?
=435

which is in error by less than 1 per cent.
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TABLES

1V. Cumuldative " Student's’ Distribution. This table gives values
of { corresponding to a few selected values of

n—1
F() = fﬁ (ﬂ _ 2)15/_2()1 xz)(ﬁnﬂdx

with n = 1, 2, , 30, 40, 60, 120, . Since the density is syni-\
metric in ¢, it fo]lows that F(—f) = L — F(). One should not inter-
polate linearly between degrees of freedom but on the rLclprocQ'l Bt ihe
degrees of freedom, if good accuracy in the last digit 18 desiredy” As an
llustration, we shall compute the 975 valuc for 40 degreés Uf freedom.
The values for 30 and 60 are 2.042 and 2.000. Usng:the reciprocals
of #, the interpolated value is

A \J
14s — Yo P\
0047 — Y80 7 740 (9 0u2 — 2000y — 2.021
Teo = Teo 22 A0

w

which is the correct value. Interpolaﬁilg linearly, one would have

obtained 2.028. ™
V. Cumulative F Dzstmbudwn., Thls table gives values of F corre-

sponding to five values of ¢
»~\

+8 )
r(mg{\; - 2) e Tt O )t dy
= ,___'l_.__————-—'_'—'_
T D)
N2

s

—

for SCIeGﬁ}d values of m and n; m is the number of degrees of freedom
in the numerator of F,andnis the number of degrees of freedom in the

table also provides values corresponding to
detigminator of F. The rovides vl oo gt of

wA 10, .05, 025, 01, and 005 beca
freedom is the rec].proca.] of F, for n and m degrees of freedom. Thus
for G = .05 with 3 and 6 degrees, one finds

_L =112

Fos3, 6) = F o5 (b 3 844

the reciprocals of m and n as in Table IV

One should interpolate oB

for d racY.
good accuracs i



- Tarem I. OBDINATES oF THE Nomval Dexéry Frxerros
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. .0132':0129‘.01251,0122 0118] 016" 0113 0110, 0107
01041 .010N0099. 0096 0093 0091, _0OSS; 0084 0084 0081
00791 .082F 0075 0073 0071 .0069| 0067 0063 0063 0061
,OOﬁo‘wgggs -0056| .0055 0053/ .0051 .0050' .0048! 0047 0046

0044 0043 .0038! 0037 0036/ 0035 0034
AO038| 00321 .0031] 00301 .0029| 0028 0027 0026 0025 0025
0024 0028 0022 0022 0021 0020 0020|0019, .0018| 0018
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Tarte II. CoMuraTive NorMarn DISTRIBUTION
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Taprz IV ]
prE IV, Cumuratmve “Stupest's” DisTRIBUTION®

£

(=)

Flty =
/_ - -2 | T 40
) V(1 )
h I“ -
n 75 .90 .85 075 99 095 | L9995
1 1.000 | 3.078 | 6.314 [ 12.706
. . . 31.821 | 63.857 | 636.

g ?15 1.886 | 2.020 | 4.308 | 6.965| 9.925 31.251;3

3 765 | 1.688 | 2.353 | 3.182 4.541 [ 5.841] 12.94N

4 741 | 1.533 | 2.132| 2.776 | 3.747 | 4.6041 88I0

5 727 | 1.476 | 2015 | 2.571| 3.365 | 4.032 | ("6,859

i N\

8 718 | 1.440 ] 1.943 | 2,447 | 3.143 | 3.70{ )" 5.9

. . 2, . 5.950

g 711 | 1.a15{ 1.885 | 2.365 | 2.998 | 2.489 5405

s 706 | 1397 | 1.8604 2.306 ) 2.896 87355 | 5.041

703 | 1.383 | 1.833 | 2.262 | 2.82L {250 | 4.781

10 00! 1.372| 1.812] 2.228| 2, 764\ 2,160 | 4.587

11 697D 1.363 | 1.796 1 2.201] & % | 3.1061 4.437

12 695 | 1.356 | 1.782| 2.179, \2 681 | 3.055 4318

13 ‘64 | 1.350 | 1.771| 2.1807/»2.650 | 3.012} 4.221

14 ‘602 | 1.346 | 1.761 | 24451 2.624 | 2.977) 4.140

15 601 | 1.841 | 1.733 | 02N31| 2.602| 2.947| 4.073

16 600 | 1.337 | 1.746f Z120 2588 | 2.921) 4015

17 680 | 1.333 ) 1,746\ 2.110 2.567 2.898 3.965

18 ‘658 | 1.330 [ 1§8a| 2201 | 2.552( 2878 3.922

19 ‘683 | 1,398 | wA 729 | 2.093 | 2.580 | 2.861 3.883

20 687 | 1325 [Na.725 | 2.086 | 2.528 | 2.845 3.850

21 .686 % Jso% | 1.721| 2.080 | 2.518 | 2.831 3.819

22 6864 (W32 | 1.717 | 2.074 2.508 | 2.819 8.792

25 .685 \\1 %19 | 1714 2.060 | 2.300 | 2.807) 3.767

24 ‘68bd "1.318 | 1.711) 2.064 o402 | 2.707 | 3.746

25 684/ 1.816 | 1.708 2060 | 2.485 | 2.787) 3.728

N\ < .

26 \26 L 315 1.706] 2.056 | 2.479 | 2.779 3.707

27 0 ose ) 1820 qqe3| glosz| 2473 27710 8600

50 ()" es3 | 1313 | L.701( 2.048 1 2.467 2.763 | 8.674
Sean7!  es3 | 1.311; 1.609 | 2.045 2.462 | 2.756 | 8.659

80 ‘653 | 1.310| 1.607 | 2.042 | 2.457 2,750 | 3.646

4 .\’ ¢

O 4| 2.021] 2.423| 2.704 | 3.581
\\:“ gg E% iggg ig% 5000| 2.390 | 2.660) 3.460
120 677 | 1280 | 1.658 | 1.980 2358 | 2.617| 337

% "B74 | 1.282 | 1.645 | 1.960 9326 | 2.576| 3.201

—

w of R. A. Fisher and Frank Yates published

# This table is abridged from 1t

by Oliver & Boyd, Litd., Edinburgh o

of the authors and their publishers.

o
he ©* Statistiesl Tables
nd London, 1938
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A

Analysis, of covariance, 350, 363
adjusted means, 356
of variance, 318
(See also Components of variance
and Distribution-free tests}
Ureco-Lalin squares, 341
Latin squarcs, 339
in linear regression, 318
mixed models, 348
one-factor experiments, 323, 364
randomized blocks, 320
three-factor cxperiments, 337, 346
two-factor experiinents, 329, 334,
342, 345
Average outgolng quality, 384

Average sanuple size in sequential tests, .

372, 379 R\

B

.

Bets distribution, 115 .~‘\

Bias, 132, 149, 255 _ A\
Binomial distribution; 64
confidence limitgdorp, 233
cumnulative fpfrh; 235
normal appfe¥imation, 139
Divariate'nogmal distribution, 165
Lriome;n't\gcnera.ting tunelion for, 166
o AN
\™
}auchy distribution, 117, 216
Central Iimit theorem, 136
Chi-aquare distribution, 1989
Chi-square tests, 271
contingeney tables, 276, 280, 281
distribution-frec methods, 395, 898,
402, 405
goodness-of-fit, 270
Comnbinations, 10, 12

C

429

Combinatorial generating functions, 19
Components of variance, 342
mized model, 343
one-factor experiments, 364
three-factor experiments, 346
two-factor experiments, 342, 345

Q!

' Clonditional distributions, 50, 62,83
£\

bivariate normal, 168  §
continuous, 83 A\ )
diserete, 50, 52 o4
multivariate norf aly 181
Conditional probability, 23, 26, 82, 50
Confidence intervals, 220, 222
: differer;ce:between means, 267
gencral iethod for, 229
large sample, 235
. mean of & norma! population, 224
3¢ of binomial population, 233
* range of rectangular population, 241
regression coefficients, 205, 304
variance of normal population, 226
variance ratio, 243
{See also Distribution-free confidence
intervals)
Confidence regions, 223
large sample, 237
for mean and variance, 227
for regression. coelficients, 296
Consistency of an eslimate, 143
Contingency tables, 273
tests for independence in, 276, 281,
287, 288
Continuous distributions, 68, 68
Control chart, 362
Correlution, 103, 167, 189
distribution of estimator, 314
multiple, 191, 314
partial, 190
Spearman's rank, 417
Covariance, 103, 167, 189
analysis of, 350, 363
Critical region, 247



INDEX

Cumulants, 108, 123
Cumulatlve distributions, 76, 81
Curve, regression, 169
operating-characteristic of, 376
Curve fitting, method of least AU UAT S
for, 309
method of moments vs.
likelthood, 161

maxirnu

i

Degrees of freedom, 200, 205, 206
Density funeiions, 44, 46, 81
Difference bcL“r\m means, confidence
limits for, 267
distribution of, 267
tests of, 263
Diserete distributions, 44, 47
Diserimination, problem of' 269
Distribution-free confidence intervals,
difference betwoen medians, 305
median of, 388
percentage points, 380

Distributions, Cauchy, 117
chi-square, 109
conlinnous, 65, 68
curnulative, 76, 81
diserete, 44, 47, 5, B2
201
gamne, 1132
Giram-Chandier, 118
hypergeometrie, 61
linear funetion of normal Warintes,

218 a

multinomial, 58 e\
multivariate, 47, 71 N
multivariaie norg [y 7
normal, 108 < N

P(earson, 118 O

Poisson, K™

sample, 128

“SturloQ(’ﬁ 206

i, 20

umfnrm 107

&zmmue rabio, 204
(Sev also BLme]mn‘ distributions)

s

regression coeflicients, 408 o N
Distribution-free methods, 385 R
estimate of medians, 388 2\

estimsate of percentage points 388
estimate of regression cw\%ucnfs
406, 409
for f&ctonal cxponmm\ 398 3499,
402
general linear regresamn 408
largo sample, 3@, 393, 306, 411
simple regression, 406
Dmtnbutmztigee tests, associntion, 410,
417«
cornex fést 410
equa,llty of distributions, 391, 304
\qua,hty of mediang, 304
interaction, 405
median, 390
one-factor experirents, 308
percentage points, 300
repression coefficients, 407, 400
run test, 391
tw o—fa,rtor experiments, 300, 402
Distributions, 44, 47, 81
beta, 115
binomial, 54
bivariate normal, 165

Error, Type I, 246
Type IT, 217

Estimation, of parameiees, 1.7
efliciency of, 149, 150
maximum likelihood, 154
method of moments, 161
unhbinsed, 149

Bxpeeted values, 91

Lxperiments, design of, i, 316

I

F distribution, 204
Fretorial miomenty, 100
Fidueinl probahility, 222
Finite populations, sampling from, 130,
146
Forms, guadratic, 177
Functions, density, 44, 81
disgtribution, 81
likelihood, 151
momwent generading, 100
power, 248, 369
regression, 190, 201

430
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G

Ciamma distribution, 112
Coodness-of-fit test, 270

CGiram-Charlier series, 118
Greco-Tatin sguares, 341

H

Hermite polynomials, 119
HMomogeneity of variances, test of, 269 -
IMomoseedastieity, 324
Hwvpo!heses, composite, 256

lincar, 305

null, 245

simple, 256

See also Tests of hypotheses)

1

Independence, functional, 49, 50

in econtingency tables, 273

in probability sense, 34, 50, 85

of sample mean and variance, 201
Inspeetion, sampling, 375 \
Intersction, in analysis of variagee,

335, 330, 343, 340, 405 A% )
in contingeney tables, 278 ’

I ‘\
&
Joint distribution, .7§~
Joint moments, 102
N &/ L

Largefs}mples, 136
pepfidence limits from, 235 .
"‘\: _gonfidence regions from, 237
S distribution of estimators, 208
of likelihood ratio, 259
of mean, 136
Lalin squares, 339
Law of large numbers, 183
Least squares, 308
Likelihood-ralio tests, 257
largesamplo distributien for, 258
Linear funetions of normal variates, dis-
tribution of, 218
Tinear regression, 291

AN

M

Marginal distributions, 50, 82
comfinuous, 82
diserete, 50

Margingl probability, 23, 24

Matrices, 170
alpebra of, 171
inverse of, 172, 175
variance-covariance, 176

Maximum likelihood, principle of, 152,

153 N\
Maximum-likelihood cstimatorsy 152,
154 ¢\

large-sample distributioh bf,"208
properties of, 158 _ % by

Mean, confidence liﬁlft;é'for, 224
distribution o{ 136, 259
populationy(03
sample, J80
testsof;259, 263

Medign} 94, 387

- Mendelian inheritence, 41, 42, 288, 287

#oment, geperating function, 100
for chi-square distribution, 200
factorial, 102
for gamma distribution, 115
for normal distribution, 112, 166, 184
for Poisson distribution, 101
for several variates, 103

Moment problem, 103

Moments, 93
estimators of, 132, 160
facterial, 100
joint, 102
population, 93
sample, 130

Multinomial distribution, 58

Multiple correlation, 181

Multivariate distributions, 47, 74

Multivariate normal distribution, 177
estimators for parameters in, 186
marginal and conditional distribu-

tions for, 181
moment generating funetion for, 184

~

383

Nonparametrie methods,
ree methods)

{See also Ixstribution-f
Normal digtribution, 108
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Normal distribution, hivariate, 165
conditional forms, 168, 181
distribulion, of sumple mean, 108

of sample varianee, 204

independence of sample mean and
variance, 201

marginal forms, 168, 181

morent generating funefion for, 112,
166, 181

mullivariate, 177

regression funetions for, 169, 184

role of, 142

Null hypothesis, 245

O

Operating-characteristic curve, 376
Order statisties, 885

Orthogonal polynomials, 313
Orthogonal (ests, 321

P

Parameter space, 255
Parameters, 55
Partial correlation, 160

Partitions, of nnmhua 10 Ny

of sums of squares, 319, 324, 334335
Yearson's chi-square tests, 271 8\%
Pearson’s curves, 118 '&,}
P'rmut'ltmns IO 11 \\
Poisson d[strlhutmn 594
Populations, 126 \’,
Power, of the test 248

funetion of iQ{t 253, 360
Prediction mh\L\a 267, 301
Prineiple ot\{] axinimm ke lihd, 152,

.1'3 N

Prol;uxh]l;tx 8
60{1( itionai, 23, 26, 32

empirieal, 36
fiducial, 222
laws of, 27
marginal, 23, 24
Probability density tanction, 4.4, §1

Q

randratic forms, 177
(uality control, 361, 362

432

R

Random sampling, 126, 128
Liandomization, 217
Ruandosized Dloeks, 324
Range, tnterquartile, 587
Regression, 280, 106, 408

cocdlicient, 205

curve, [6H4

funetion, 1490, 241

lincar, 291, {08

multiple, A0
nornal, 200, 307 O\’
: R ¢
varianee ahoud, 100 \ “
Thuns, 301 \ \/
N

v

Sample, 126 /
diat vt et
mean,, 38
mmm\t , 130
‘gmlmfn l)h--[ug

E')lz},{nfilin,rz clistribadions for, difteronee of

S two means, 218, 266

128, 102

o o . .
::" Iikelilom! ratio, 234

maxitnue likeliiwod estimators, 212
ean of Lirge samnples, 136
of samples from binomizt populi-
tion, 200
of xieniples Teom narmal population,
108
of samples from Poiz=on popula-
2063
order nfiztio:, 386
rad e of serple varianees, 2064
regressioh coc{licients, 202, 302

stan of stuares, 101}

tiom,

vitriunee of o snmple, 208
sapling inspection, 375
donlsle, 377
seqpeniinl, 377
sinehe, 375
Sequenital fests] 366
for hinorial, 378
funclanoentnl ddentity for, 384
for mesn of nortnal population, 371
AN, 883
prever Tunetioes for, 369, 383

st ple siee in, 372
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Significance level, 247 Tests of hypotheses, (wo-sided, 262
Standard deviation, 95 variance of normal population, 267
Statistical inference, 3, 124 (See wlso Distribution-free methods)
Statistical tests (see Tests of hypothe- Three-factor experiments, 337, 339

) Bes) analysis of variance, 337
Stirling’s formula, 16 components of varianec, 346
“Student’s” ¢ distribution, 206, 218 - Transformations, 107, 192
Sufficient estimators, 151 Truneaied normal distribution, 243
SBum of squares, distribution of, 199 Two-factor cxperiments, 320

parlition of, 319, 324, 331, 335 analysis, of covariance, 350

of varianee, 334
components of varianee, 342

N

T distribution-free analysis, 3095402
Type I and [T errors, 246 f\"“
¢ distribution, 206, 217, 218 \“\'
Tchebysheft's inequality, 135 LU
Test, unbiased, 255 AN 3
uniformly most powerful, 253 Unbiased csl.imator% Q49
Tests of hypotheses, 245 Unbiased tost; 253:.
additivity of means, 335, 345 Uniform distriblition, 107
distribution-free (see Distribution- UIlif()l‘mI)quQﬁ powerful test, 253
free tests) ’\ &/
equality-of-means, 263 \ ‘Q ) v
goodnesz-of-fit, 270 W )
homoegeneity of variances, 268, 260 Y}giancc, 04
independence in coniingency tables,,}t “Sanalysis of, 318
273 LN distribution of semple, 203
large-sample, 257 N\ eslimate of, 156
likelihood-ratio, 257 “< of linear functien, 183
linearity, 321 PA\Y about regression function, 190
mean of normal popuht\i;{ w2h 0 of sample mean, 133
null hypotheses, 245y test of homogeneity of several vari-
> ances, 269

onesided, 262 £ )
ratio of varianchs 265 Variance-covarianee matrix, 176

sequential, 3@?\ ., Variate, 46, 65
A&

AN\
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